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ABSTRACT

The purpose of categorization is to identify generalizable classes of objects whose members can be treated equiv-
alently. Within a category, however, some exemplars are more representative of that concept than others. De-
spite long-standing behavioral effects, little is known about how typicality influences the neural representation
of real-world objects from the same category. Using fMRI, we showed participants 64 subordinate object catego-
ries (exemplars) grouped into 8 basic categories. Typicality for each exemplar was assessed behaviorally and we
used several multi-voxel pattern analyses to characterize how typicality affects the pattern of responses elicited
in early visual and object-selective areas: V1, V2, V3v, hV4, LOC. We found that in LOC, but not in early areas, typ-
ical exemplars elicited activity more similar to the central category tendency and created sharper category
boundaries than less typical exemplars, suggesting that typicality enhances within-category similarity and
between-category dissimilarity. Additionally, we uncovered a brain region (cIPL) where category boundaries
favor less typical categories. Our results suggest that typicality may constitute a previously unexplored principle
of organization for intra-category neural structure and, furthermore, that this representation is not directly
reflected in image features describing natural input, but rather built by the visual system at an intermediate

processing stage.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of categorization is to identify generalizable classes of
objects whose members can be treated equivalently. Within a category,
however, some exemplars are more representative of that concept than
other members of the same category. This typicality effect usually man-
ifests behaviorally as increased speed of recognition, as well as lower
error rates for verifying category membership of the more typical item
(Posner and Keele, 1968; Rosch, 1973; Rosch and Mervis, 1975). Despite
well-studied behavioral effects, little is known about how typicality in-
fluences the neural representation of objects from the same category:
for example, why are some dog exemplars more representative of the
category “dog” than others and where can we find evidence for this
distinction in the brain?

Previous investigations of the neural basis for typicality have
employed category learning paradigms over artificially constructed cat-
egories (Aizenstein et al., 2000; Zeithamova et al., 2008; Davis et al.,
2012a,b; Davis and Poldrack, 2014). By contrast, our environment con-
tains tens of thousands of distinct object categories (Biederman, 1987,
Deng et al., 2009). Furthermore, considerable evidence suggests that
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perceived typicality is reflected in how fast and how accurately we per-
ceive many such real-world objects and categories (Posner and Keele,
1968; Rosch, 1973; Rosch and Mervis, 1975). Thus, the overarching
goal of our present work is to investigate how the typicality of real-
world object categories affects their representation in human visual
cortex.

Many theories and cognitive models have been proposed for the
instantiation of typicality as a dimension of object representation in
human categorization (for reviews, see e.g. Ashby and Maddox, 1993,
2005; Minda and Smith, 2002; Abbott et al., 2012), however, a clear
neural correlate of these models has yet to be identified. Nevertheless,
in virtually all such models, distinct objects are defined as points in a
multidimensional psychological space and similarity (in terms of fea-
tures or properties) between such items belonging to the same or differ-
ent categories represents the defining characteristic by which typicality
(and categorization itself) is instantiated. In the spirit of this observa-
tion, we set out to test one of the earliest and most fundamental hypoth-
eses regarding the instantiation of typicality relationships between
exemplars in a given category: the family resemblance hypothesis first
put forward by Rosch and Mervis (1975). Their proposed model states
that highly typical members of a category are those that share most fea-
tures in common with other members of that category (i.e. a typical
subordinate level exemplar, such as a Golden Retriever, is highly repre-
sentative of the basic level category ‘dog’), while simultaneously sharing
the fewest features in common with other categories in a similar
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semantic space (i.e. with other basic level categories within the same
superordinate category; e.g. Golden Retrievers would share very few
features in common with cats).

Investigating hypotheses such as this one is challenging in the real-
world domain mainly because the sheer number of categories in our
environment is estimated to be in the tens of thousands (Biederman,
1987) and because controlling for the features of natural visual stimuli
is notoriously difficult. In our present experiment, we put forward the
first attempt to push beyond small-scale, artificial, hand-designed
datasets for investigating how typicality modulates neural representa-
tions by leveraging a large-scale taxonomically structured image data-
base (ImageNet, Deng et al., 2009), along with employing a method
for obtaining high-throughput behavioral rankings (the Amazon
Mechanical Turk platform). As such, we are now able to test directly
whether brain regions exist where the family resemblance hypothesis
represents a guiding principle for the neural intra-class organization of
a large set of real-world object categories and, furthermore, compare
this organization against the corresponding low-level visual feature
representation of the over one thousand images we used as stimuli in
our study.

To this end, we performed a passive viewing fMRI experiment in
which participants viewed color photographs from 64 subordinate
level object categories grouped into 8 basic level categories. The typical-
ity of each subordinate category (hitherto referred to as an “exemplar”)
within its corresponding basic category (hitherto referred to as a “cate-
gory”) was ranked behaviorally. The family resemblance model was
originally defined using a semantic feature space: e.g. the category
‘dog’ is exemplified by features such as ‘has-tail’, ‘wags-tail’, and ‘is-
furry’; and an exemplar which possesses more of these features would
be rated as more typical. Although Rosch's family resemblance hypoth-
esis has been well received, it has been difficult to find definitive evi-
dence for it primarily because the feature space used by the brain is
unknown. Here, we set out to investigate this question in the domain
of neural activation patterns, where we can remain agnostic as to the
nature of the feature spaces, semantic or otherwise, in which object
categories are represented. Multi-voxel pattern analyses allow us to
characterize the similarity between neural patterns elicited by these
categories throughout human visual cortex, without making any explic-
it assumptions regarding the building blocks of the feature spaces them-
selves. As such, we found that in object-selective regions of occipito-
temporal cortex, but not in early visual areas, typical exemplars were
more similar to the central tendency of the category and created signif-
icantly sharper category boundaries than less typical exemplars, sug-
gesting that typicality enhances category cohesion (within-category
similarity) and category distinctiveness (between-category dissimilari-
ty). Thus, we present the first evidence that typicality modulates neural
representations of real-world object categories in object-selective
cortex in a manner consistent with the family resemblance hypothesis.
Interestingly, using a whole-brain analysis, we also uncovered the first
evidence of a brain region where category boundaries favor less typical
categories (cIPL). Taken together, these findings suggest that the two
extremes of the behavioral typicality continuum may simultaneously
exert separate influence on the neural representation of real-world ob-
ject categories across human visual cortex, and moreover, that typicality
may constitute a previously unexplored principle of organization for
intra-category neural structure, one that is likely built by the visual sys-
tem at an intermediate processing stage, rather than inherited from
low-level features of our input.

2. Materials and methods

2.1. Constructing a behaviorally-normed category set

The goal of our experiment was to test the family resemblance
hypothesis (Rosch and Mervis, 1975) which posits that highly typical

members of a category share the most features in common with other
members of that category, while simultaneously sharing the fewest fea-
tures in common with members of semantically related categories. To
test this model appropriately, we required a set of basic level categories
(e.g. dog, car), each comprising multiple subordinate level categories
(exemplars, e.g. Chihuahua, sedan) for which perceived typicality
could be assessed behaviorally.

In our experiment, we started with a four-tiered taxonomic hierar-
chy comprising the following putative levels: two domain level catego-
ries (natural, man-made), four superordinate level categories (animals,
plants, musical instruments, vehicles), sixteen basic level categories
(e.g. bird, cat, dog, fish for ‘animals’), and one hundred and twenty-
eight subordinate level categories (e.g. Chihuahua, stealth plane, pars-
ley). Subsequently, we assessed the entry levels in each of our four
superordinate tiers. We performed a match-to-category behavioral
experiment in which we asked participants to verify whether each
image belonged to its subordinate, basic, superordinate, or domain
level category. We found that, of our four putative superordinate cate-
gories, ‘animals’ and ‘vehicles’ were the only ones who adhered strongly
to the putative hierarchy, whereas plants and musical instruments var-
ied across disparate taxonomic tiers and, for some of their categories,
the basic level was situated either at a more general or more specific
tier than their putative designation (e.g. putative basic levels ‘wind in-
struments’, ‘string instruments’, ‘garden plants’ closer to superordinate
level; putative superordinate level ‘plants’ closer to basic level; putative
superordinate ‘musical instruments’ closer to domain level; see Supple-
mentary material and Supplementary Figs. S1 & S2). Therefore, to main-
tain a consistent, verified hierarchy, we selected a subset of our original
dataset comprising eight basic level categories (dogs, cats, birds, fish;
cars, boats, planes, trains) and sixty-four subordinates (eight for each
basic category, e.g. Chihuahua, stealth plane, etc.). This hierarchy has
the added advantage that it contains equal numbers of natural/animate
and man-made/inanimate categories, a distinction known to affect rep-
resentations of object categories in human visual cortex (Connolly et al.,
2012; Konkle and Caramazza, 2013).

Subsequently, we used ImageNet (Deng et al., 2009) to collect 16
distinct images containing objects of interest from each of our sixty-
four subordinate level categories; i.e. if the subordinate category is
pugs, then we showed 16 distinct photographs of pugs. Pictures were
cropped to feature the objects prominently and centrally within a
square region (400 x 400 pixels in size) and included their natural back-
ground. Within each subordinate category, the images varied greatly in
color and pose. Representative images from each of our 64 categories
are shown in Fig. 1.

2.2. Behavioral experiment: typicality rankings

2.2.1. Participants and materials

40 participants were recruited on Amazon's Mechanical Turk plat-
form (AMT) from a pool of trusted US-based participants with at least
2000 previously accepted AMT results at a minimum of 98% approval.
Participants completed the study from their own personal computing
device.

2.2.2. Experimental procedures

Each of the AMT hits contained 28 trials comprising each possible
pairwise comparison between the eight subordinate categories within
a particular basic category. In each trial, participants viewed a randomly
drawn image from two subordinate categories and were asked to indi-
cate by clicking which image was the most typical of its corresponding
basic category. Ten individual participants ranked each basic category,
with each participant ranking a median of six basic level categories
overall. Participants were compensated $0.50 per hit and each hit took
an average of 88 s to complete.
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Fig. 1. Typicality ranked stimulus set. Our stimulus set comprised 8 subordinate level exemplars from each of 8 basic level categories. Participants were shown 16 images from each
exemplar, varying in pose and color (only one representative image is shown above). Within each basic category, exemplars are organized according to behavioral typicality from the
most typical (left) to the least typical (right): e.g. airliners (rank 1) and fighter planes (rank 2) were judged to be much more typical examples of planes than stealth planes (rank

7) and gyrocopters (rank 8).

2.2.3. Data analysis

Pairwise typicality rankings for the eight subordinates in each basic
category were obtained. We computed the percentage of times each
subordinate was chosen as the more typical item in a pair and used
this quantity to order subordinates according to their typicality in
each basic category independently. We also recorded a high value for
the inter-subject reliability of the collected typicality rankings (75% +
2%, mean =+ s.e.m.; see Supplementary Fig. S3).

2.3. fMRI experiment

2.3.1. Participants

12 volunteers (2 females, ages 24-32, including authors M.C.I. and
M.R.G.) with no past history of psychiatric or neurological disorders
and normal or corrected-to-normal vision participated in this experi-
ment. Participants gave informed written consent in compliance with
procedures approved by the Stanford University Institutional Review
Board. Except for the participating authors, all subjects received finan-
cial compensation. One participant was subsequently rejected from
our analyses due to our inability to satisfactorily identify their regions
of interest using the localizer scanning procedures detailed in the corre-
sponding section below.

2.3.2. Scanning parameters and preprocessing

Imaging data were acquired with a 3 Tesla G.E. Healthcare scanner. A
gradient echo, echo-planar sequence was used to obtain functional im-
ages (volume repetition time (TR), 2 s; echo time (TE), 30 ms; flip angle,
80°; matrix, 128 x 128 voxels; FOV, 20 cm; 29 oblique 3 mm slices with
1 mm gap; in-plane resolution, 1.56 x 1.56 mm). We also collected a
high-resolution (1 x 1 x 1 mm voxels) structural scan (SPGR; TR,
5.9 ms; TE, 2.0 ms; flip angle, 11°) in each scanning session. The func-
tional data were spatially aligned to compensate for motion during ac-
quisition and each voxel's intensity was converted to percent signal
change relative to the temporal mean of that voxel using the AFNI soft-
ware package (http://afni.nimh.nih.gov/afni). To perform our analyses,
we computed the average voxel activity for each block. We did not per-
form any smoothing.

2.3.3. Experimental procedure

Images were presented centrally subtending 21°x21° visual angle
and were superimposed on an equiluminant gray background. We
used a back-projection system (Optoma Corporation) operating at a

resolution of 1024 x 768 pixels at 75 Hz. Participants performed 2 ses-
sions, 8 runs each, with 16 blocks per run and 8 images per block.
Each block consisted of a 500 ms fixation cross presented centrally,
followed by 8 consecutive stimulus presentations from the same subor-
dinate level category, with a 12 s gap between the blocks. Each image
was presented for 160 ms, followed by a 590 ms blank gray screen. Sub-
jects were asked to maintain fixation at the center of the screen, and
respond via button-press whenever an image was repeated (one-back
task, 0-2 repetitions per block). Over the course of the experiment,
each participant viewed 2 blocks from each of the subordinate level cat-
egories. The order of blocks, the number of repetitions in each block, and
the images in each block were counter-balanced across runs and be-
tween subjects. The experiment was implemented in MATLAB (www.
mathworks.com), using the Psychophysics toolbox extension
(Brainard, 1997; Pelli, 1997).

2.3.4. Regions of interest (ROIs)

The positions and extents of each participant's lateral occipital com-
plex (LOC) were obtained using standard localizer runs conducted in a
separate fMRI session. Participants completed two runs, each with 12
blocks drawn equally from six categories: child faces, adult faces, indoor
scenes, outdoor scenes, objects (abstract sculptures with no semantic
meaning), and phase-scrambled objects. Blocks were separated by
12 s fixation cross periods and comprised 12 image presentations,
each of which consisted of images presented for 900 ms, followed by a
100 ms fixation cross. Each image was presented exactly once, with
the exception of two images during each block that were repeated
twice in a row. Subjects were asked to maintain fixation at the center
of the screen and respond via button press whenever an image was
repeated. To avoid any issues related to intrinsic variability in signal
reliability across our participant pool, we selected fixed-volume ROIs
across all our participants. The volume of LOC in mm?® was chosen
conservatively, based on sizes previously reported in the literature,
accounting for resolution differences between studies (Golarai et al.,
2007; Walther et al., 2009; lordan et al., 2015). Accordingly, LOC was de-
fined as the top 500 voxels bilaterally near the inferior occipital gyrus
that responded to an objects > scrambled objects GLM contrast.

To determine the locations of early visual areas V1, V2, V3v, and hV4,
we used a standard retinotopic mapping protocol in a separate experi-
ment, in which a checkerboard pattern undergoing contrast reversals
at 5 Hz moved through the visual field in discrete increments (Sayres
and Grill-Spector, 2008). First, a wedge subtending an angle of 45°
from fixation was presented at 16 different polar angles for 2.4 s each.
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Next, an annulus subtending 3° of visual angle was presented at 15 dif-
ferent radii for 2.4 s each. Each subject passively observed two runs of
6 cycles in each condition, yielding 512 timepoints per subject. The loca-
tions and extents of early visual areas were delineated on a flattened
cortical surface for each subject, using a horizontal vs. vertical meridian
general linear test, which gave the boundaries between retinotopic
maps.

We aligned the positions of the ROIs to the experimental sessions
using the AFNI software package (http://afni.nimh.nih.gov/afni),
by first aligning the structural scans between sessions with sub-
millimeter precision, and then applying the alignment transformation
to the ROI positions. Percent signal change was then extracted for
each voxel in each ROI and these vectors were submitted to the similar-
ity analyses described next.

2.4. fMRI data analysis

2.4.1. Correlation advantage

First, we assessed whether the most or the least typical exemplars in
each category were more similar to the central category tendency. To
this end, for each basic category, we used the average neural patterns
of all exemplars as a proxy for the central category tendency represen-
tation. This definition is similar to that of a putative prototype for that
category (Sigala and Logothetis, 2002). We then computed the correla-
tion (Pearson's r) between this category central tendency, on the one
hand, and the most and least typical subordinates in each basic category,
on the other hand. We hypothesized that if the family resemblance
hypothesis is upheld, then the most typical subordinate will be more
similar (correlated in its elicited pattern of activation) to the central
category tendency than the least typical subordinate. Additionally, we
computed a version of this analysis where we omitted from the
computation of the central tendency the most typical and least typical
exemplars (leaving only the six middle-typicality exemplars in each cat-
egory). Results were similar, regardless of the method used to compute
the central category tendency. Throughout our analyses, we chose to
focus on Pearson correlation as a straightforward, scale-invariant mea-
sure of similarity of neural patterns, which has the ability to normalize
across differences in mean activation level between stimuli and is there-
fore less susceptible to such variation across a large set of object
categories.

2.4.2. Category boundary effect

Next, we assessed whether typical exemplars share fewer features in
common with other categories than less typical exemplars. Here, we
refer to neural features (as measured by voxel activity levels) and we
make no assumption that the features are semantic or otherwise
(Clarke and Tyler, 2014), only that multi-voxel patterns reflect some un-
derlying feature space. By measuring similarity of brain activity patterns
we aim to bridge the gap between the two types of features, positing
that similarity in one descriptive space (voxels) is a good proxy for sim-
ilarity in the other (internal feature representation). We hypothesized
that if this is the case, then categories defined solely by relatively higher
typicality exemplars would be more distinguishable from one another
than categories comprising only less typical exemplars. To this end, for
each ROI and each subject, we split our dataset into two halves compris-
ing the four most typical and four least typical exemplars, respectively,
from each category. We then computed a category boundary effect
measure separately for each of the two halves of our dataset. We
defined the category boundary effect identically to previous work
(Kriegeskorte et al., 2008; lordan et al., 2015) as the difference between
within-category similarity and between-category similarity, averaged
across all categories considered. For each basic level category, we com-
puted within-category similarity as the average correlation (Pearson's
1) between neural patterns elicited by within-category pairs of blocks
(e.g. for ‘dogs’, this quantity is defined as the average correlation

between voxel activations for any two blocks where any type of dog
was shown). Similarly, we computed between-category similarity as
the average correlation between neural patterns elicited by between-
category pairs of blocks across basic level categories (e.g. for ‘dogs’,
this quantity is defined as average correlation between voxel activations
for a block where dogs were shown and another block where, for exam-
ple, planes were shown). We performed each of these analyses for each
subject and ROI separately. We used this measure to quantify how well
categories are separated in the neural space of representation, given
their behavioral typicality.

2.4.3. Low-level feature analysis

To show that the effects in the correlation advantage and category
boundary effect analyses above, are not solely due to low-level image
features, we also performed analogous computations for image descrip-
tor features extracted from our stimulus images: LAB color histograms,
GIST (Oliva and Torralba, 2001), and multi-scale Gabor wavelet features
(Kay et al., 2008). Color histograms were represented using LAB color
space. For each image, we created a two-dimensional histogram of the
a* and b* channels using 64 bins per channel. We then averaged these
histograms over each of the 16 distinct stimuli in each subordinate cat-
egory, such that each subordinate was represented as a 4096-length
vector representing the averaged colors of its corresponding images.
For GIST, we used the descriptor features first proposed by Oliva and
Torralba (2001). This model provides a summary statistic representa-
tion of the dominant orientations and spatial frequencies at multiple
scales coarsely localized on the image plane. We used spatial bins at
4 cycles per image and 8 orientations at each of 4 spatial scales for a
total of 3.072 filter outputs per image. We averaged the GIST descriptors
for each of the 16 distinct stimuli in each subordinate category to arrive
at a 3072-dimensional representation of each of our 64 subordinates.
For wavelet features, we represented each image in our stimulus set
as the output of a bank of multi-scale Gabor filters. This type of repre-
sentation has been used to successfully model the representation in
early visual areas (Kay et al., 2008). Each image was converted to gray-
scale, downsampled to 128 by 128 pixels, and represented with a bank
of Gabor filters at three spatial scales (3, 6, and 11 cycles per image with
a luminance-only wavelet that covers the entire image), four orienta-
tions (0, 45, 90, and 135°), and two quadrature phases (0 and 90°). An
isotropic Gaussian mask was used for each wavelet, with its size relative
to spatial frequency, such that each wavelet has a spatial frequency
bandwidth of one octave and an orientation bandwidth of 41°. Wavelets
were truncated to lie within the borders of the image. Thus, each image
isrepresented by 33«2 +4 +646%2+4+ 11x11+2+4 = 1328 total
Gabor wavelets. We created the wavelet representation of each of our
64 subordinate categories by averaging over the representation of the
16 distinct images associated with each of them.

2.4.4. Whole-brain searchlight analysis

For each participant's brain, we extracted all gray matter voxels and
placed a sphere of radius 4 voxels at every other voxel location (step
size: 2 voxels). We excluded all locations where half or more of the
voxels in the proposed cube did not overlap with gray matter. For
each cube, we computed a local category boundary effect (CBE) for
responses to the most typical and the least typical half of our dataset,
similar to the analysis procedure described above. We then used these
values to identify brain regions where category boundaries were stron-
ger between more typical categories (more typical half CBE > less typical
half CBE) and vice versa (more typical half CBE < less typical half CBE).
Individual subject results were transformed into group space by
aligning to the Talairach atlas and averaging the aligned maps together.
To establish statistical significance for our results, we thresholded the
group maps for each analysis by using a false discovery rate (FDR) of
0.05, which was determined by computing 1000 simulated group
maps, obtained by permuting the category labels without replacement
in each voxel cube searchlight.
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2.5. Statistical analyses

For all our experiments, we used paired two-tailed t-tests when
comparing observed effects against chance and when establishing
whether a significant difference exists between two observed effects.
We used Kolmogorov-Smirnov tests to establish that no significant de-
viation from normality exists for the distributions of all effects to which
t-tests were applied. All statistical tests were implemented in MATLAB.

3. Results

3.1. Typical exemplars are more neurally similar to category central
tendency

Using two separate behavioral experiments (see the Materials and
methods section), we established a dataset of eight verified basic level
categories (4 natural/animate and 4 man-made/inanimate), each of
which comprised eight subordinate level categories normed according
to their typicality. Henceforth, we will use the term ‘category’ to refer
to one of our eight basic level categories and the term ‘exemplar’ to
refer to one of our sixty-four subordinate level categories. To investigate
whether the family resemblance hypothesis is upheld in visual cortex
neural patterns of activation, we scanned participants viewing our
sixty-four exemplars (16 visually different images per exemplar, see
the Materials and methods section). Since psychological representa-
tions of categories are influenced by factors such as task, learning, and
attention (Nosofsky, 1992; Love, 2005; Harel et al., 2014 ), we asked par-
ticipants to perform a one-back repetition task in the scanner (i.e. no ex-
plicit categorization or typicality judgment task) used solely to ensure
that they maintained alertness during the experiment. Our analyses fo-
cused on object-selective cortex (lateral occipital complex (LOC)) and
early visual areas (V1, V2, V3v, hV4).

First, we assessed the intra-class component of the family resem-
blance hypothesis, namely that more typical exemplars in a category
share more features in common with the central category tendency
that do atypical exemplars. To test this, within each of our eight catego-
ries, we compared how similar (using Pearson's r) the most typical and
least typical exemplars were to the central category tendency, defined
here by averaging together the neural patterns corresponding to all ex-
emplars in each category. This definition is similar to that of a putative
prototype for that category (Sigala and Logothetis, 2002).

Here, we hypothesized that if family resemblance provides a good
model for the organization of neural patterns of activation elicited by
real-world objects with respect to their typicality, then more typical
items should sit closer to the center of this space and hence be more
similar to the central category tendency, than the atypical exemplars.
Indeed, we found that highly typical exemplars were by far more similar
to the category average than less typical exemplars in object-selective
cortex (i.e. LOC), but not in early visual areas (Fig. 2; LOC: high > low
t(10) = 3.8, p = 0.003; V1: high > low t(10) <1, p = 0.491; V2:
high > low t(10) = 1.3, p = 0.228; V3v: high > low t(10) < 1,p =
0.468; hV4: high > low t(10) = 1.2, p = 0.261). Additionally, these re-
sults replicate using a version of the analysis where we omitted from
the computation of the central tendency the most typical and least typ-
ical exemplars (leaving only the six middle-typicality exemplars in each
category, see Supplementary Fig. S4). Interpreted differently, an equiv-
alent prediction of the family resemblance hypothesis is that the degree
of similarity of each subordinate within a basic category to the most typ-
ical subordinate in that category should consistently decrease with the
typicality rating given to that particular subordinate. Indeed, we found
that this alternative prediction mirrors our results above: similarity is
highest between the two most typical subordinates within a basic cate-
gory and drops successively as typicality for a given subordinate de-
creases (see Supplementary Fig. S5). Together, these findings show
that intra-class structure of real-world categories is consistent with
the family resemblance hypothesis in LOC and provides evidence that

~ | Most Typical [ Least Typical
065| ns. ns nNs NS ** | 060
— I E P Ts
L 055 | gpo ” [I | 0.50
5 c G W ik
P,_
S 0.45 e 0.40
LIJ -t*‘
i
i
8 o35 0.30
0.25 0.20
hv4 LoC

Fig. 2. Typical exemplars are more correlated with category central tendency than less
typical exemplars in object-selective cortex. Correlation between category central
tendency and most typical exemplar in each category (orange) or least typical exemplar
in each category (blue), averaged across all 8 basic level categories. In object-selective
cortex (LOC), typical categories are more similar to the average category representation
than less typical categories and this effect is not present in early visual areas. (Inset) We
performed a similar analysis using the image-level features from our stimulus set: LAB
color histograms (C), GIST features (G), and multi-scale Gabor wavelet features (W). All
features show similar values for both highly typical and less typical exemplar
correlations, with the GIST and wavelet features exhibiting an opposite trend to our LOC
results (higher correlation for less typical exemplars). Therefore, low-level stimulus
features cannot solely explain our results in object-selective cortex. =++P < 0.001,
«P < 0.01, n.s. — not significant. Error bars: 95% confidence interval. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

the representation of object categories shares key properties in com-
mon with prototype- and norm-based representations (see e.g. Sigala
et al,, 2002; Leopold et al., 2006; Abbott et al., 2012).

To show that the effects we observed cannot be explained solely on
the basis of the low-level properties of the stimuli themselves, we rep-
licated our similarity analysis using several sets of descriptor features
extracted from our images: LAB color histograms, GIST (Oliva and
Torralba, 2001), and multi-scale Gabor wavelet features (Kay et al.,
2008) (see the Materials and methods section for details on how each
of the features was computed). We found that all features show similar
numerical correlations between the most typical and least typical exem-
plars with the central category tendency. Additionally, for GIST and
wavelet features, we saw an opposite pattern to our LOC results, namely
that correlation with the central category tendency was numerically
higher for exemplars ranked as less typical (GIST high r = 0.86, low
r = 0.84; wavelet: high r = 0.60, low r = 0.64; color: high r = 0.88,
low r = 0.84). For color histograms, a small trend is observed for typical
exemplars to be more correlated with the central category tendency,
however this trend disappears (and in fact reverses) when excluding
the most and the least typical exemplars from the computation of the
central category tendency (middle-six exemplars analysis: GIST: high
r = 0.87, low r = 0.89; wavelet: high r = 0.54, low r = 0.60; color:
highr = 0.91, low r = 0.93; see Supplementary Fig. S4). Overall, this im-
plies that low-level features alone cannot fully account for the pattern of
results we observe in object-selective cortex, and further suggests that
the human visual system likely constructs (or, at the very least, strongly
amplifies) feature descriptions of our visual input that correlate with
behavioral typicality judgments later on.

3.2. Typical exemplars exhibit stronger inter-category boundaries

We saw that typicality is correlated with how similar an exemplar is
to its central category tendency. Next, we investigated whether typical-
ity affects the second dimension of the family resemblance hypothesis:
are typical exemplars more dissimilar to other categories than atypical
ones? We hypothesized that if this is the case, then categories defined
solely by relatively higher typicality exemplars would be more



M.C. lordan et al. / Neurolmage 134 (2016) 170-179 175

distinguishable from one another than categories comprising only less
typical exemplars. As such, we split our dataset into to halves, corre-
sponding to the most typical and least typical exemplars from each cat-
egory. We subsequently computed the category boundary effect
(Kriegeskorte et al., 2008; lordan et al., 2015) for each of the two halves
of the dataset as the difference between within-category similarity and
between-category similarity, averaged across our eight basic level cate-
gories. We predicted that if the family resemblance hypothesis holds,
then the category boundary effect would be stronger when computed
on the half of the dataset comprising the four most typical exemplars
from each category than when computed on the half of the dataset
consisting of the least typical four exemplars from each category.
Using this measure of how separable categories are in the space of neu-
ral patterns of activation, we found that typical exemplars are more eas-
ily distinguishable than less typical exemplars in object-selective cortex
(Fig. 3; LOC: most typical > least typical, t(10) = 3.0, p = 0.013). By con-
trast, typicality does not modulate how separable categories are in the
space of neural activations in early visual areas (V1: most
typical > least typical, t(10) < 1, p = 0.597; V2: most typical > least typ-
ical, t(10) = 1.5, p = 0.167; V3v: most typical > least typical, t(10) =
1.1, p = 0.298; hV4: most typical > least typical, t(10) = 1.9, p = 0.092).

Analogously to our previous analysis, we asked whether low-level
features of our stimulus set are sufficient to explain the pattern of re-
sults we observed in object-selective cortex. Accordingly, we computed
the category boundary effect on feature descriptors (LAB color histo-
grams, GIST, and multi-scale Gabor wavelet features) extracted from
the most typical half and least typical half of our dataset. For all of our
feature representations, we found an opposite effect to the one present
in LOC: numerically more pronounced category boundaries for the less
typical half of our dataset, compared to the most typical half (high vs.
low category boundary: color 0.09 vs. 0.14; GIST 0.13 vs. 0.14; wavelet
0.27 vs. 0.32). These results, together with the finding that category
boundaries are identical in early visual areas for the two halves of our
dataset, provide evidence that it is unlikely that low-level features are
directly responsible for the emergence of the typicality effect we
observe in object-selective regions. In short, this suggests that typical
exemplars become more separated in their neural representation in
LOC, and that this effect is not purely driven by the visual appearance
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Fig. 3. Category boundaries are stronger for highly typical exemplars in object-selective
cortex. Category boundary effect for the two halves of our dataset comprising the most
typical 4 exemplars from each category (orange) and the least typical 4 exemplars from
each category (blue). In object-selective cortex (LOC), typical exemplars from one
category are more distinguishable from exemplars of other categories, an effect not
reflected in early visual areas' patterns of activation. (Inset) We performed a similar
analysis using the image-level features from our stimulus set: LAB color histograms (C),
GIST features (G), and multi-scale Gabor wavelet features (W). All of the feature
representations show an opposite trend to that observed in LOC (stronger category
boundaries for less typical items) and therefore cannot fully explain our results in
object-selective cortex. ++P < 0.01, +P < 0.05, n.s. — not significant. Error bars: 95%
confidence interval. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

of our exemplars and categories, but instead is a direct result of sequen-
tial processing along the ventral visual stream.

Finally, the category boundary effect is a compound measure that
relies on both within-category similarity (category cohesion) and
between-category dissimilarity (category distinctiveness) (Kriegeskorte
et al,, 2008; lordan et al,, 2015). To investigate the contributions of
each of these components of category representation on the strength
of the typicality effect we observed, we computed these measures sep-
arately for our two halves of the dataset comprising the most and least
typical categories, respectively. In all visual areas, we observed no
significant differences in cohesion or distinctiveness between the two
halves of our dataset (cohesion: LOC: most typical > least typical,
t(10) = 1.7, p = 0.120; V1: most typical > least typical, t(10) < 1,
p = 0.564; V2: most typical > least typical, t(10) = 1.5, p = 0.153;
V3v: most typical > least typical, t(10) < 1, p = 0.631; hV4: most
typical > least typical, t(10) < 1, p = 0.763; distinctiveness: LOC: most
typical > least typical, t(10) <1, p = 0.736; V1: most typical > least
typical, t(10) < 1, p = 0.735; V2: most typical > least typical,
t(10) <1, p = 0.537; V3v: most typical > least typical, t(10) <1, p =
0.760; hV4: most typical > least typical, t(10) = — 1.2, p = 0.247). Con-
sidering our main finding that a significant difference exists between
category boundaries elicited by more and less typical exemplars in
LOC, the lack of a significant effect for cohesion and distinctiveness sug-
gests that neither within-category similarity, nor between-category
similarity differences drive our effects on their own, but rather it is
their combined effect (difference) that separates typical and atypical
exemplars in this brain region.

An analogous prediction of this second aspect of the family resem-
blance hypothesis indicates that if typical subordinates are indeed
more separable from other categories, then they should sit farther
from a putative fixed category boundary between two basic categories
compared to less typical categories. Indeed, a separate analysis that de-
fined fixed support-vector-machine (SVM) boundaries between every
pair of basic categories indicated that, on average, the most typical
four subordinates in each category exhibited larger distances to their
corresponding boundary than the four least typical subordinates in
LOC, but not in early visual regions (Supplementary Fig. S6).

Overall, our findings provide strong evidence in favor of the neural
plausibility of the family resemblance hypothesis in LOC. In this brain
region, typical exemplars are more similar to the average category rep-
resentation and are more separable (as conferred by their larger catego-
ry boundary effect) across categories than atypical exemplars, which
suggests that typicality exerts a measurable and consistent modulatory
effect on the nature of the distributed patterns of neural representation
of real-world object categories in object-selective cortex.

3.3. Whole-brain analysis

So far, we have limited our analyses to functionally defined cortical
areas. However, it may be the case that activity in other brain areas be-
yond our pre-selected ROIs may favor the representation or dissociation
of typical and atypical exemplars from the same category. To investigate
this hypothesis, we performed a whole-brain searchlight analysis
(Kriegeskorte et al., 2006) where we computed the category boundary
effect for the most typical half of the dataset and the least typical half
of the dataset for equally spaced spheres of voxels tiling the entire
gray matter surface of our participants' brains. This analysis identifies
brain regions where typicality organizes the neural representation
space according to the family resemblance hypothesis (typical exem-
plars more similar to central category tendency, while maximizing dis-
tance to other categories). More interestingly, by performing the
reverse contrast, we may also uncover brain regions where the opposite
is true: since we know that even atypical exemplars are still identified as
members of their respective categories, it is likely that computations
exist which are meant to ensure differentiation between these
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Fig. 4. Whole-brain searchlight analysis uncovers brain regions where category boundaries are stronger between most typical and least typical exemplars. We performed a whole-brain
searchlight analysis where we computed the difference between the category boundary effects obtained for the most typical half of our dataset and the least typical half of our dataset.
Figure shows group map results, corrected for multiple comparisons using an FDR measure (see the Materials and methods section for details). Regions shown in orange (right LOC,
right hV4) showed a significant effect of typicality: highly typical exemplars were more distinguishable from exemplars of other categories. Conversely, regions shown in blue (left
cIPL) showed the opposite trend: less typical exemplars were more easily distinguishable form members of other categories. This cortical region has been previously implicated in
category learning (Zeithamova et al., 2008) and contextual processing (Konen and Kastner, 2008), which suggests the possibility that it may aid in the categorization of atypical items,
perhaps through mediating contextual facilitation of recognition. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

exemplars and thus enable correct assignment into their purported
categories.

Consistent with our previous ROI results, we found that typicality
modulates the strength of category distinctions in the right LOC and to
a lesser extent in a region adjacent to the right hV4 (Fig. 4, right). This
finding indicates that, indeed, typicality modulates representation of
object categories in object-selective cortex and that this effect is stron-
gest in this region, not simply a late vs. early visual cortex difference
in representation.

Interestingly, we also uncovered an advantage for neural patterns of
activation distinguishing best between atypical exemplars, compared to
highly typical exemplars, in the caudal inferior parietal lobule (cIPL;
Fig. 4, left). This region has been previously implicated in contextual pro-
cessing (Konen and Kastner, 2008) and category learning (Zeithamova
et al,, 2008), which raises the possibility that enhanced category bound-
aries for atypical categories here may be due to additional or specialized
processing required to disambiguate between less typical exemplars
and subsequently assign them a correct category label.

Taken together, our results suggest that typicality is linked to the
neural representation of object categories across several brain regions,
with its effects extending to both intra-class and inter-class organiza-
tion. Our results provide neural confirmation for both predictions of
the family resemblance hypothesis in object-selective cortex (Rosch
and Mervis, 1975) and, furthermore, we provide the first evidence
that typicality provides a concrete dimension of neural organization
for real-world object categories in both object-selective cortex (LOC)
and cIPL, but outside of early visual cortex, which further suggests that
this representation is not directly reflected in image features describing
natural input, but rather built by the visual system at an intermediate
processing stage.

4. Discussion

Typicality is a ubiquitous, yet often overlooked property of virtually
all objects we interact with in our visual environment. Despite well-
studied and long-standing behavioral effects associated with typicality,
such as increased speed of recognition and lower error rates for identi-
fying the category membership of more typical items (Posner and Keele,
1968; Rosch, 1973; Rosch and Mervis, 1975), little is known about how
typicality relates to the neural representation of objects from the same
category. Our work is the first to address this fundamental question
using a large array of real-world stimuli. As such, we provide the first
neural test of the predictions of the family resemblance hypothesis for
real-world object categories: namely, that highly typical exemplars

share most features in common with other members of their category
(e.g. ‘Golden retriever’ is a highly representative dog), while simulta-
neously sharing the fewest features in common with other exemplars
from semantically-related categories (e.g. Golden retrievers share
fewer features with cats than less typical exemplars such as Chihua-
huas). Using several similarity-based multivariate pattern analyses,
which make no explicit assumptions regarding the nature of the neural
feature space in which objects are represented, we found that this con-
ception of category structure describes the organization of neural pat-
terns better in object-selective regions than in early visual areas of the
brain. Coupled with the fact that this representation is not directly
reflected in image features describing natural input, these data suggest
that such a representation is not given in the input, but rather built by
the visual system at an intermediate processing stage. In the current
set of experiments, we exclusively investigated how typicality affects
the neural representation of a set of carefully normed, hierarchically or-
ganized object categories. While there is no reason to believe that a sep-
arate collection of categories (i.e. one not possessing a taxonomic
relationship) would behave differently within the context of neural
typicality measures as exemplified in our results, such an experiment
remains an interesting question for future work.

The neural basis of typicality has been previously investigated al-
most exclusively using learning paradigms over artificially constructed
category spaces (see e.g. Aizenstein et al., 2000; Sigala et al., 2002;
Sigala and Logothetis, 2002; Davis and Poldrack, 2014). One of the
main advantages of using artificial categories is the tremendous degree
of control one possesses over the instantiation of the feature space, as
well as the stimuli themselves. Additionally, synthetic category spaces
remove all potential confounds related to object properties that may
be directly linked to typicality itself, such as familiarity, discriminability,
and expertise. Nevertheless, these idealized and impoverished spaces
not only noticeably lack the complexity of visual stimuli we encounter
in our everyday environment, but participants' experience with them
is necessarily more limited, leaving open the question as to what degree
such findings generalize to the real world and to categories that are
overlearned. By testing the predictions of the family resemblance
hypothesis on real-world categories directly, our current experiment
provides long overdue concrete evidence for a typicality-based organi-
zation of the neural representation space for such categories in human
visual cortex. In our experiment, we not only found that highly typical
objects generate stronger category boundaries in object-selective cor-
tex, but we also uncovered the first evidence for a brain region where
the opposite is true: in the caudate inferior parietal lobule (cIPL), we
see atypical exemplars becoming more differentiated by neural patterns
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of activity than their highly typical counterparts. This region is superior
to the trans-occipital sulcus and the functionally defined scene-selective
region TOS (or OPA) (Grill-Spector, 2003; Dilks et al., 2013), likely over-
lapping with functionally defined area IPSO (Silver and Kastner, 2009). A
representation of objects is known to exist in posterior parietal cortex
(PPC), independent of action planning, and this cortical region has
been shown to exhibit adaptation to object properties, including
shape and size (Konen and Kastner, 2008). Furthermore, the PPC has
also been implicated in the learning of new categories (Zeithamova
et al., 2008), in the recall of words and objects, provided that the stimuli
are associated with strong memory of source context (Johnson and
Rugg, 2007; Peters et al., 2009; Vilberg and Rugg, 2009, 2012), as well
as in the representation of perceptual decision variables (Heekeren
et al., 2006; Tosoni et al., 2008). Taken together, these findings raise
the possibility that this cortical region may aid in the categorization of
atypical items, perhaps through mediating contextual facilitation of rec-
ognition. Intuitively, processing category boundaries both in terms of
typical and atypical exemplars is potentially necessary for arriving at a
unified percept of a category: to recognize a ‘dog’ in our visual interac-
tion with the world, our brain must understand both what a dog usually
looks like (typicality), as well as what degree of deviation from this rep-
resentation should place our percept outside of that particular category.

Nevertheless, caution is necessary in interpreting these results, espe-
cially in dorsal stream regions: given that typicality is a subjective
measure that subsumes multiple dimensions and features of object
categories (including e.g. frequency of occurrence in the world and fa-
miliarity with such objects), the possibility exists that our findings
may have been influenced by differences in the allocation of attentional
resources across such dimensions (e.g. if participants paid more atten-
tion to blocks containing less familiar subordinate categories). However,
our searchlight analysis identified regions where the category boundary
effect (computed via the similarity of multi-voxel patterns) differs con-
sistently between typical and atypical members of our categories, which
indicates the presence of discriminable category information in these
brain regions. Thus, if attention plays a role in our findings, then it
would necessarily have to be operating on the category representations
themselves, bringing within category members closer in neural space
and pulling between category members apart. Additionally, previous
work has shown that two parallel and hierarchically organized neural
systems for object representation exist along the ventral and dorsal
pathways (Konen and Kastner, 2008; Wurm and Lingnau, 2015,
Vaziri-Pashkam and Xu, 2015; Braunlich and Seger, 2016) and our re-
sults in cIPL are consistent with such an account.

Recent work has shown that distance from an inferred category
boundary constructed from patterns of neural activation in human
inferotemporal cortex can be used to successfully predict behavioral
categorization (Carlson et al., 2013; Ritchie et al., 2015). This distance-
based model of category representation is consistent with our results
in LOC, where we show that category boundaries are stronger between
highly typical exemplars than between less typical exemplars, with the
latter sitting farther from the category central tendency. Relatedly,
many distance metrics have been previously employed for characteriz-
ing the similarity of neural patterns of activity in human visual cortex in
general, and typicality in particular, ranging from overall cortical activi-
ty level (Leopold et al., 2006; Park et al. 2015) to Pearson correlation
(e.g. Haxby et al., 2001; Davis and Poldrack, 2014; lordan et al., 2015)
and Euclidean or city block distance (Ashby and Maddox, 1993; Sigala
et al., 2002). Of these, we chose to focus on Pearson correlation as a
straightforward, scale-invariant measure of similarity of neural patterns
(Davis et al., 2014). This is especially relevant, given that we perform a
large-scale experiment using 64 real-world categories and prior evi-
dence has shown that objects from different categories have the poten-
tial to elicit consistently different univariate activity profiles both within
and between brain regions (e.g. animate vs. inanimate categories
(Connolly et al., 2012; Konkle and Caramazza, 2013), small vs. big
objects (Konkle and Oliva, 2012; Konkle and Caramazza, 2013)).

Moreover, our decision is consistent with analyses used in many recent
experiments investigating the underpinnings of object categorization
and typicality in humans and non-human primates (e.g. Haxby et al.,
2001; Kriegeskorte et al., 2008; Connolly et al., 2012; Davis and
Poldrack, 2014; lordan et al., 2015).

Several cognitive theories have been proposed that suggest that we
may expect real-world object categories to have a strong prototype-
dominated cortical representation (Nosofsky, 1991; Ashby and
Maddox, 1993), with typical exemplars closer in neural distance to the
basic level prototype (category central tendency) and less typical exem-
plars generating a more distinct neural pattern of activation (i.e. larger
neural distance from prototype). Indeed, previous work involving artifi-
cially constructed face stimuli suggests that both feature-based and
neural distance from a category central tendency are usually correlated
with perceived typicality (Leopold et al., 2001; Sigala et al., 2002;
Leopold et al., 2006; Davis and Poldrack, 2014). Prototype theory is
typically contrasted with exemplar theory, which proposes that we rep-
resent categories with respect to several emblematic exemplars (or per-
haps all exemplars) in each category, which serve to map that particular
category's representational space (Nosofsky, 1986, 1991; Ashby and
Maddox, 1993). This theory has also received some support; recent
work has shown that exemplar models explain a comparable amount
of variance in human performance on category generalization and pre-
diction tasks (Abbott et al., 2012) and even surpass prototype models in
performance using data from humans and monkeys categorizing car-
toon depictions of faces and fish (Sigala et al., 2002). In our work, we
find brain areas that separately emphasize characteristics from both of
these putative representational models, raising the possibility that the
human brain may use both strategies for forming categories. First, we
show that, in object-selective regions, typical categories are closer to
the central category tendency and category boundaries are sharpened
between typical and atypical exemplars, a finding that is consistent
with the family resemblance hypothesis, as well as with a prototype-
based encoding of category structure (but see (Ashby and Maddox,
1993) for an alternate explanation of how exemplar theory may also ac-
count for such a prediction). Conversely, we also find that atypical ex-
emplars exhibit stronger category boundaries in cIPL. One potential
explanation for this finding is that real-world categories, especially
due to their inherent intra-class complexity, may not be fully or accu-
rately captured by a single prototype per category. Thus, while a proto-
type representation would imply that the intra-class distribution of
subordinate categories within a basic is less important compared to
the location of the category central tendency (i.e. prototype), by con-
trast an exemplar representation would predict a much heavier reliance
on less typical subordinates for differentiating between basic categories,
which may be the case in cIPL. Taken together, these two contrasting
patterns of results suggest that the human brain may, in fact, use both
exemplar and prototype models to structure category representations,
albeit in different brain regions. Such a position could reconcile the
seemingly contradictory behavioral and modeling results that have yet
to eliminate either model as the sole framework for intra-category orga-
nization (see e.g. Sigala et al., 2002 and Leopold et al., 2006). Critically,
our results provide clear evidence that LOC and cIPL are strong candi-
dates for future investigations attempting to elucidate the contributions
of these individual models in explaining the eventual emergence of per-
ceptual typicality.

Over the past two decades, evidence has been uncovered for specific
cortical regions selective for broad stimulus classes such as faces, scenes,
objects, and bodies (Malach et al., 1995; Kanwisher et al., 1997; Epstein
and Kanwisher, 1998; Downing et al., 2001), as well as organizational
principles corresponding to broad attribute dimensions, including
animacy (Chao et al., 1999; Kriegeskorte et al., 2008; Connolly et al.,
2012; Konkle and Caramazza, 2013) and real-world object size (Konkle
and Oliva, 2012; Konkle and Caramazza, 2013). Furthermore, many stud-
ies have demonstrated that category information is recoverable from dis-
tributed representations (Haxby et al., 2001; Cox and Savoy, 2003;
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Haynes and Rees, 2005; Eger et al., 2008; Huth et al., 2012), yet what con-
stitutes a category representation in the high-dimensional space of neu-
ral patterns of activity is still poorly understood. Here, we show that
perceived typicality, a high-level cognitive property of objects, directly
modulates the representation of exemplars and categories fairly early
in visual processing. Our results raise the possibility that the same
theoretical principles that guide the cognitive formation of categories
(cognitive usefulness and feature correlation constraints present in the
environment (Rosch et al., 1976)) may, in fact, fundamentally and se-
quentially guide the processing of visual input from its very early cortical
stages. Indeed, previous work from our lab has already shown that this
early link to cognition also holds for hierarchical organization of category
structure, whose influence on the organization of neural patterns
becomes apparent as early as lateral occipito-temporal cortex (lordan
et al,, 2015). In the process of building category representations, the in-
clusion of such principles would improve the utility and flexibility of
eventually generated categories by emphasizing better boundaries be-
tween them and by allowing distinctions between individual exemplars
and multiple levels of generality to emerge gradually from the neural
representation. Furthermore, such principles constitute important sign-
posts for recent work whose goal is to map the layers of deep learning
models for visual categorization onto successive stages of the ventral
visual hierarchy (Cadieu et al., 2014; Yamins et al., 2014; Yamins and
DiCarlo, 2016). Most such computational models include few, if any,
high-level cognitive constrains on their internal representation aside
from categorization itself as an end-goal. Moving forward, we argue
that attempts to build models of visual processing that more accurately
mirror the human visual processing hierarchy would benefit from incor-
porating (either explicitly or at a verification stage) other high-level
properties such as typicality, which we have presently identified as hav-
ing a measurable impact on the feature spaces of visual regions strongly
involved in object and category recognition (e.g. LOC).

Together, these findings solidify our understanding of how we de-
fine and describe boundaries between category representations in the
brain, and moreover, put forward a new hypothesis for the organization
and goals of intermediate visual processing: it is not simply focused on
isolating and identifying primitives such as shapes, objects, or scenes,
and their interplay, but also on employing cognitively relevant princi-
ples of category organization (of which typicality and hierarchical orga-
nization are two examples) to directly guide the development of the
neural representation, for the ensuing purpose of improved and more
flexible categorization, action, and cognition.
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