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Abstract

■ Objects can be simultaneously categorized at multiple levels
of specificity ranging from very broad (“natural object”) to very
distinct (“Mr. Woof ”), with a mid-level of generality (basic level:
“dog”) often providing the most cognitively useful distinction
between categories. It is unknown, however, how this hierar-
chical representation is achieved in the brain. Using multivoxel
pattern analyses, we examined how well each taxonomic level
(superordinate, basic, and subordinate) of real-world object cat-
egories is represented across occipitotemporal cortex. We found
that, although in early visual cortex objects are best represented

at the subordinate level (an effect mostly driven by low-level
feature overlap between objects in the same category), this
advantage diminishes compared to the basic level as we move
up the visual hierarchy, disappearing in object-selective regions
of occipitotemporal cortex. This pattern stems from a combined
increase in within-category similarity (category cohesion) and
between-category dissimilarity (category distinctiveness) of
neural activity patterns at the basic level, relative to both sub-
ordinate and superordinate levels, suggesting that successive
visual areas may be optimizing basic level representations. ■

INTRODUCTION

Humans can distinguish between thousands of object cat-
egories in the real world with impressive speed and accu-
racy. Understanding how the brain represents categories
across visual cortex is a key step in elucidating the complex
cognitive mechanism by which categorization is achieved.
The mapping of category information across human

visual cortex has been a major effort of modern neuro-
imaging studies, uncovering specific cortical regions
specialized for broad stimulus categories such as faces,
scenes, objects, and bodies (Downing, Jiang, Shuman, &
Kanwisher, 2001; Epstein & Kanwisher, 1998; Kanwisher,
McDermott, & Chun, 1997; Malach et al., 1995), as well as
organizational principles corresponding to broad attribute
dimensions, including animacy (Konkle & Caramazza,
2013; Connolly et al., 2012; Kriegeskorte et al., 2008;
Chao, Haxby, & Martin, 1999) and real-world object size
(Konkle & Caramazza, 2013; Konkle & Oliva, 2012).
Furthermore, many studies have demonstrated that cate-
gory information is recoverable from distributed rep-
resentations (Huth, Nishimoto, Vu, & Gallant, 2012; Eger,
Ashburner, Haynes, Dolan, & Rees, 2008; Haynes &
Rees, 2005; Cox & Savoy, 2003; Haxby et al., 2001). How-
ever, most previous studies have glossed over a fundamen-
tal property of real-world categories: Specifically, any
particular object may belong to multiple categories simul-
taneously, ranging from very broad (“natural object,”
“animal”) to very distinct (“pug,” “Mr. Woof”). Indeed, it

is yet unknown how this hierarchical representation is
achieved in the brain.

We thus focus our investigation on assessing how cat-
egory representations at different taxonomic levels (sub-
ordinate, basic, superordinate) change over the span of
the human ventral visual cortex. Although, under certain
conditions, category levels are flexible and may change
with context, typicality, and degree of expertise (Mace,
Joubert, Nespoulous, & Fabre-Thorpe, 2009; Tanaka &
Taylor, 1991; Jolicoeur, Gluck, &Kosslyn, 1984),most often,
human observers categorize objects faster and more
accurately at amid-level of specificity (i.e., basic level; Mack,
Wong, Gauthier, Tanaka, & Palmeri, 2009; Murphy &
Brownell, 1985; Mervis & Crisafi, 1982; Horton &Markman,
1980; Anglin, 1977; Rosch, Mervis, Gray, Johnson, & Boyes-
Braem, 1976; Brown, 1958). Thus, in our work, we re-
stricted our analysis to sets of categories where these
three levels are clearly differentiated behaviorally.

Concurrently, in characterizing the neural represen-
tation of this category hierarchy, we were inspired by
Rosch et al.’s (1976) seminal work on categorization,
which argued that a good category simultaneously maxi-
mizes within-category similarity (cohesiveness) and
between-category dissimilarity (distinctiveness). In our
work, we applied this principle to multivoxel fMRI patterns
as a concrete measure of the strength of category repre-
sentations across visual cortex. In particular, we ran
two fMRI experiments in which participants were shown
objects from hierarchies comprising three behaviorally
normed taxonomic levels (superordinate, basic, and sub-
ordinate), and we employed several multivoxel pattern1Stanford University, 2University of Illinois at Urbana-Champaign
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analyses (MVPAs) to characterize the similarity and dis-
similarity of activity patterns across these separate levels.
Here, high cohesion (positive correlation between activity
patterns) would indicate that information content is similar
within that particular category. Similarly, high distinctive-
ness (zero or negative correlation between activity pat-
terns) would indicate that categories are distinguishable
from one another; therefore, categories are more separa-
ble in that space.

In visual cortex, because two subordinate level exem-
plars (e.g., two pugs) should be most visually similar to
each other, one might predict that categories adhere
most strongly to a subordinate level representation. On
the other hand, one might also expect superior super-
ordinate level adherence (e.g., natural vs. man-made
objects) because these categories might best reflect orga-
nization at the coarse scale of fMRI voxels. Finally, a
wealth of behavioral evidence points to a mid-level of
generality (basic level: “dog”) as being privileged in pro-
viding the most cognitively useful distinction between
categories: Objects are learned and recognized faster at
this intermediate level than at all other levels (Mack
et al., 2009; Tanaka & Taylor, 1991; Murphy & Wisniewski,
1989; Murphy & Brownell, 1985; Jolicoeur et al., 1984;
Mervis & Crisafi, 1982; Horton & Markman, 1980; Anglin,
1977; Rosch et al., 1976; Brown, 1958). This suggests that
we may see evidence for superior basic level representa-
tions in visual cortex.

Thus, a subgoal of our work is to ask whether a par-
ticular behaviorally relevant taxonomic level is better
represented in visual cortex. Here, we show that, for a
set of object categories that exhibit a clear basic level
advantage, category representations change as a function
of taxonomic level as we move up the visual cortical
hierarchy, progressively favoring the basic level relative to
other levels of specificity. Thus, although objects are best
represented at the subordinate level in early visual cortex,
the basic level matches the quality of this representation
in high-level object-selective regions as well as dominates
superordinate representations throughout visual cortex.
This provides evidence that basic level structure may be
an emergent property of the human visual system.

METHODS

Experiment 1: Two Superordinate Categories—
Natural and Man-made

To investigate how categories are represented across
multiple levels of specificity, we ran a functional imaging
experiment in which participants were shown objects
from a three-tiered taxonomy (superordinate, basic, and
subordinate levels), and we employed several MVPAs to
characterize the similarity of activity patterns across these
separate levels. To verify that our putative taxonomic
levels are representative of real-world category organiza-
tion, we first ran two behavioral experiments that assess

the perceptual and semantic differences in recognizing
and categorizing objects across these taxonomic levels.

Stimuli

We constructed a three-tiered taxonomic hierarchy com-
prising two superordinate level (natural and man-made),
four basic level (dog, flower, plane, and shoe), and 32 sub-
ordinate level categories. These included eight breeds
of dogs: Komondor, Chihuahua, Pug, Malamute, Mastiff,
Schnauzer, Welsh Corgi, and Schipperke; eight types of
planes: airliner, biplane, fighter, delta plane, stealth, glider,
gyroplane, and seaplane; eight types of flowers: blue daisy,
ice poppy, sunflower, orchid, chrysanthemum, cosmos,
violet, and toadflax; and eight types of shoes: slippers,
cowboy boots, running shoes, pumps, loafers, flip-flops,
clogs, and cleats. We had 32 instances of each of our 32 sub-
ordinate level categories for a total of 1024 color photo-
graphs collected from the ImageNet online database
(Deng et al., 2009). Photographs were tightly cropped in
a square region around the object of interest, resized to
400 × 400 pixels, and included their natural background
(Figure 1A).

Behavioral Experiment: Match-to-category
Multi-level Verification

Participants. Twelve participants (seven women, aged
18–30 years, including one of the authors) took part in
the experiment. All participants had normal or corrected-
to-normal vision, were financially compensated (except
for the participating author), and provided informed
written consent in compliance with procedures approved
by the Stanford University institutional review board.

Materials. Stimuli were presented on a 21-in. CRT moni-
tor, approximately 30 cm away from the observer. Images
were shown centrally, subtending 16° × 16° visual angle.
The experiment was implemented in MATLAB (www.
mathworks.com), using the Psychophysics toolbox
extension (Brainard, 1997; Pelli, 1997).

Experimental procedure. Each observer viewed 1024
images for 200 msec each, followed by a category query
term. Query terms matched the image’s category on
half of the trials and were drawn from a random other
category on the other half of the trials. Query terms
were drawn equally from superordinate level (e.g.,
“natural” or “man-made”), basic level (“plane,” “dog,”
“flower,” “shoe”), or subordinate level (e.g., “Chihuahua”
or “Chrysanthemum”) category. Participants were in-
structed to respond as quickly and accurately as possible
as to whether the query term matched the image they
had just seen. Performance feedback (accuracy and RT)
was displayed at the end of each trial. Immediately before
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the experimental trials, participants were shown example
images of each of the 32 subordinate categories, along
with each of the three valid category labels affixed to that
category.

Data analysis. RTs less than 200 msec and greater than
2 sec were discarded from analysis (1% of data, no more
than 5% from any one participant). One participant was

discarded because of high numbers of rejected trials
(46%) and errors (37%). RTs were transformed into
z scores. To test for a basic level advantage, we examined
the RTs for verifying an image as a member of a super-
ordinate, basic, or subordinate level category, both overall
and for each basic level category in particular. We also
computed a measure of basic level advantage for each
of the 32 subordinate level categories, defined as the RT

Figure 1. Experiment 1: stimulus set and behavioral results. (A) The stimulus set was organized according to a three-level taxonomic hierarchy
comprising 32 subordinate level (most specific, outside layer), four basic level (middle layer), and two superordinate level (most general, center)
categories. Each subordinate category consisted of 32 color photographs, with a representative image shown. Objects varied in color and pose.
(B) Same–different subordinate level categorization behavioral experiment. We applied classical MDS to the perceptual distance between subordinate
categories measured as z scored RTs. In a two-dimensional solution, the four basic level categories formed separate clusters. The first MDS dimension
separates natural and man-made categories (superordinate level). The second MDS dimension separates dogs and shoes from flowers and planes.
(C–E) Match-to-category behavioral experiment. (C) Participants verified category membership significantly faster at the basic level than at the
superordinate or subordinate levels. (D) RT difference between basic and superordinate categorization conditions. Positive values indicate basic level
advantage. Participants identified all stimulus categories faster at the basic level than at the superordinate level. (E) RT difference between basic and
subordinate categorization conditions. Positive values indicate basic level advantage. Participants identified almost all stimulus categories faster at
the basic level than at the subordinate level. There are only three exceptions: “sunflowers,” “clogs,” and “cowboy boots,” perhaps reflecting the
atypicality of these stimuli. ***p < .001. Error bars: 95% confidence interval.
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difference (in z scores) of basic level categorization com-
pared to subordinate and superordinate level categorization.

Behavioral Experiment: Same–Different Subordinate
Level Categorization

Participants. Twelve participants (five women, aged
18–30 years) took part in the experiment. All participants
had normal or corrected-to-normal vision, were finan-
cially compensated, and provided informed written con-
sent in compliance with procedures approved by the
Stanford University institutional review board. One
participant also took part in the fMRI experiment.

Materials. Stimuli were presented on a 21-in. CRT mon-
itor, approximately 30 cm away from the observer. Images
were shown side by side, each subtending 16° × 16° visual
angle, with 3° between them. The experiment was imple-
mented in MATLAB (www.mathworks.com), using the
Psychophysics toolbox extension (Brainard, 1997; Pelli,
1997).

Experimental procedure. Each observer viewed 1024
trials, with 512 trials showing pairs of images drawn from
the same subordinate level category and 512 trials show-
ing image pairs from two different subordinate level
categories (16 pairs per subordinate per taxonomic level,
randomly drawn for each participant). Participants were
instructed to respond as quickly and accurately as pos-
sible whether both images were from the same sub-
ordinate category. Image pairs remained on the screen
until response, and RT and accuracy feedback were given
after each response.

Data analysis. RTs less than 200 msec and greater than
2 sec were discarded from analysis (2% of data, no more
than 11% from any one participant). RTs were trans-
formed into z scores relative to each participant’s mean
RT. We computed the average time required to reject a
pair of images as being from the same subordinate level
category and used this as a category distance measure in
the context of a classical multidimensional scaling (MDS)
analysis (criterion: metric stress).

fMRI Experiment

Participants. Ten volunteers (two women, aged 23–
28 years, including author M. C. I.) with no past history
of psychiatric or neurological disorders and normal or
corrected-to-normal vision participated in this experi-
ment. Participants gave informed written consent in
compliance with procedures approved by the Stanford
University institutional review board. Except for the
participating author, all participants received financial
compensation.

Scanning parameters and preprocessing. Imaging data
were acquired with a 3-T G.E. Healthcare scanner (Fairfield,
CT). A gradient-echo, echo-planar sequence was used
to obtain functional images (volume repetition time =
2 sec, echo time = 30 msec, flip angle = 80°, matrix =
128 × 128 voxels, field of view = 20 cm, 29 oblique
3-mm slices with 1-mm gap, in-plane resolution =
1.56 × 1.56 mm). We also collected a high-resolution
(1 × 1 × 1 mm voxels) structural scan (spoiled gradient
recall; repetition time = 5.9 msec, echo time = 2.0 msec,
flip angle = 11°) in each scanning session. The functional
data were spatially aligned to compensate for motion
during acquisition, and each voxel’s intensity was con-
verted to percent signal change relative to the temporal
mean of that voxel using the AFNI software package
(afni.nimh.nih.gov/afni). To perform our analyses, we
computed the average voxel activity for each block. We
did not use a general linear model (GLM) analysis and
did not perform any smoothing.

Experimental procedure. Images were presented cen-
trally subtending 21° × 21° visual angle and were super-
imposed on an equiluminant gray background. We used a
back-projection system (Optoma Corporation, Fremont,
CA) operating at a resolution of 1024 × 768 pixels at
75 Hz. Participants performed eight runs, with 16 blocks
per run and eight images per block. Each block consisted
of a 500-msec fixation cross presented centrally, followed
by eight consecutive stimulus presentations from the same
subordinate level category, with a 12-sec gap between the
blocks. Each image was presented for 160 msec, followed
by a 590-msec blank gray screen. Participants were asked to
maintain fixation at the center of the screen and respond
via button press whenever an image was repeated (1-back
task, 0–2 repetitions per block). Over the course of the
experiment, each participant viewed four blocks from
each of the 32 subordinate level categories, for a total of
128 blocks. The order of blocks, the number of repeti-
tions in each block, and the images in each block were
counterbalanced across runs and between participants.

ROIs. The positions and extents of each participant’s
functional ROIs (lateral occipital complex [LOC], trans-
occipital sulcus [TOS], parahippocampal place area
[PPA], retrosplenial cortex [RSC], and fusiform face area
[FFA]) were obtained using standard localizer runs con-
ducted in a separate fMRI session. Participants observed
two runs, each with 12 blocks drawn equally from six
categories: child faces, adult faces, indoor scenes, outdoor
scenes, objects (abstract sculptures with no semantic
meaning), and phase-scrambled objects. Blocks were
separated by 12-sec fixation cross periods and comprised
12 image presentations, each of which consisted of images
presented for 900 msec, followed by a 100-msec fixation
cross. Each image was presented exactly once, with the
exception of two images during each block that were
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repeated twice in a row. Participants were asked to main-
tain fixation at the center of the screen and respond via
button press whenever an image was repeated. To avoid
any issues related to intrinsic variability in signal reliabil-
ity across our participant pool, we selected fixed-volume
ROIs across all our participants. The volume of each re-
gion in cubic millimeters was chosen conservatively, based
on sizes previously reported in the literature, account-
ing for resolution differences between studies (Walther,
Caddigan, Fei-Fei, & Beck, 2009; Golarai et al., 2007):
LOC = 500 voxels, TOS = 200 voxels, PPA = 300 voxels,
RSC = 200 voxels, and FFA = 100 voxels. LOC was defined
as the top 500 voxels bilaterally near the inferior occipital
gyrus that responded to an objects > scrambled objects
GLM contrast. PPA was defined as the top 300 voxels
bilaterally near the parahippocampal gyrus that responded
to a scenes > objects GLM contrast. TOS was defined as
the top 200 voxels bilaterally near the TOS that responded
to a scenes > objects GLM contrast. RSC was defined as
the top 200 voxels bilaterally near RSC that responded to
a scenes > objects GLM contrast. FFA was defined as
the top 100 voxels bilaterally near the fusiform gyrus that
responded to a faces > objects GLM contrast. All ROIs
were identified bilaterally, except for some participants’
FFA (right hemisphere only: 3/10 for Experiment 1, 5/17 for
Experiment 2).
To determine the locations of early visual areas V1, V2,

V3v, and hV4, we used a standard retinotopic mapping
protocol in a separate experiment, in which a checker-
board pattern undergoing contrast reversals at 5 Hz
moved through the visual field in discrete increments
(Sayres & Grill-Spector, 2008). First, a wedge subtending
an angle of 45° from fixation was presented at 16 different
polar angles for 2.4 sec each. Next, an annulus subtend-
ing 3° of visual angle was presented at 15 different radii
for 2.4 sec each. Each participant passively observed two
runs of six cycles in each condition, yielding 512 time
points per participant. The locations and extents of early
visual areas were delineated on a flattened cortical sur-
face for each participant, using a horizontal-versus-vertical
meridian general linear test, which gave the boundaries
between retinotopic maps.
We aligned the positions of the ROIs to the experi-

mental sessions using the AFNI software package
(afni.nimh.nih.gov/afni), by first aligning the structural
scans between sessions with submillimeter precision
and then applying the alignment transformation to the
ROI positions. Percent signal change was then extracted
for each voxel in each ROI, and these vectors were
submitted to the similarity and classification analyses
described next.

fMRI Data Analysis

Within-category similarity (cohesion) and between-
category similarity (distinctiveness). These analyses
are defined identically to quantities used in Kriegeskorte

et al. (2008): Cohesion is within-category similarity; dis-
tinctiveness is between-category dissimilarity. For each
category at each taxonomic level (subordinate, basic,
superordinate), we computed category cohesion as the
average correlation between neural patterns elicited by
within-category pairs of blocks (four per subordinate cate-
gory, 32 per basic category, 64 per superordinate category)
at that taxonomic level. For example, at the basic level,
cohesion for “dogs” is defined as the average correlation
between voxel activations for any two blocks where any
type of dog was shown. Similarly, we computed category
distinctiveness as the average correlation between neural
patterns elicited by between-category pairs of blocks at
each taxonomic level. For example, at the basic level, dis-
tinctiveness for “dogs” is defined as average correlation
between voxel activations for a block where dogs were
shown and another block where, for example, flowers were
shown. We performed each of these analyses for each par-
ticipant and ROI separately. To show that the effects we
obtain are not solely because of low-level image features,
we also computed cohesion and distinctiveness in an
analogous fashion for image descriptor features extracted
from our stimulus images: color histograms, GIST (Oliva
& Torralba, 2001), HOG (Dalal & Triggs, 2005), and SIFT
(Lowe, 2004).

Category boundary effect. To quantify the interplay
between cohesion and distinctiveness and how they give
rise to category distinctions, we also defined the category
boundary effect identically to Kriegeskorte et al. (2008) as
the difference between cohesiveness and distinctiveness
across a taxonomic level, averaged across all categories
from that level. This quantity provides a measure of
how well categories are separated at each taxonomic
level. For each ROI, we also compute category boundary
effect differences between the basic level versus the sub-
ordinate and superordinate level representations. These
analyses were also repeated for the image descriptor
feature representations of our stimuli.

Correlation classifier. To assess the amount of infor-
mation present in the neural patterns at each taxonomic
level, we implemented a standard MVPA correlation clas-
sifier to predict stimulus categories from neural patterns
of activation at all three levels in our taxonomy (sub-
ordinate, basic, and superordinate). For each participant,
we performed cross-validation by using two of the eight
runs for testing (one block from each subordinate cate-
gory) and the remaining six runs for training (three blocks
from each subordinate category). We averaged the results
across cross-validation folds to obtain classification accu-
racies for each participant and ROI. To compare classi-
fication results between different taxonomic levels, we
normalized the decoding accuracy using the formula
(x − c)/(1 − c), where x is the accuracy obtained at a
given level and c is the chance value (c is 12.5% for the

Iordan et al. 1431



subordinate level, 25% for the basic level, and 50% for the
superordinate level). To control for the number of training
examples at the basic and superordinate levels, we
matched the number of training and testing points to those
at the subordinate level (three blocks for training, one
block for testing) by randomly sampling blocks 10,000
times with replacement. We performed two-tailed t tests
to identify results that were significantly different from
chance levels (defined above) and two-tailed t tests within
each area to identify when decoding accuracy at the basic
level is significantly greater than accuracy at the other levels
in the taxonomy. We also obtained ROI confusion matrices
by extracting subordinate level confusion matrices for each
participant and averaging them together. A row of a con-
fusion matrix records the probability of classifying the
corresponding subordinate category as each of the 32 sub-
ordinate categories in the columns.

Experiment 2: Three Superordinate Categories—
Vehicles, Furniture, and Musical Instruments

Experiment 1 used object categories that straddle the
boundaries of two main dimensions of selectivity known
to affect the responses to objects in occipitotemporal
cortex: animacy (Connolly et al., 2012) and real-world
size (Konkle & Caramazza, 2013). Furthermore, by includ-
ing naturalistic backgrounds together with our objects of
interest in Experiment 1, it is possible that this factor may
influence the observed category grouping. To ensure this
is not the case, as well as to demonstrate the generaliza-
bility of our results from Experiment 1 to additional cate-
gories, we constructed a new three-tiered taxonomic
hierarchy comprising exclusively big, inanimate objects.
We first generated a putative taxonomy comprising 36
subordinate level categories and used a match-to-category
behavioral experiment to eliminate nine members with
ambiguous category status (defined as weak basic level
advantage over the subordinate). Similar to Experiment 1,
we then used a same–different subordinate categorization
behavioral experiment to further verify that our new puta-
tive taxonomic levels are representative of real-world cat-
egory organization. Finally, we conducted a second fMRI
experiment using the new stimuli and replicated our anal-
yses from Experiment 1.

Stimuli

We constructed a new three-tiered taxonomic hierarchy
comprising exclusively big inanimate objects: three super-
ordinate level categories (vehicles, furniture, musical in-
struments), nine basic level categories (cars, airplanes,
ships, chairs, beds, tables, drums, guitars, pianos), and
36 subordinate level categories (four types of each of
the nine basic level categories listed above: cars = sports
car, sedan, antique car, station wagon; airplanes = airliner,
biplane, fighter, stealth plane; ships = ice breaker, cargo
ship, battleship, cruise ship; chairs = folding chair, armchair,

straight chair, Eames chair; beds = canopy bed, sleigh
bed, platform bed, bunk bed; tables = dining table, coffee
table, pedestal table, folding table; drums = bass drum,
snare drum, timpani, bongos; guitars = flamenco, Strato-
caster, dreadnaught, Les Paul; pianos = grand piano,
Hammond organ, upright piano, synthesizer). We had
40 instances of each of our 36 subordinate level categories
for a total of 1440 color photographs collected from the
ImageNet online database (Deng et al., 2009). Images were
cropped tightly around each object of interest, and we re-
placed the original background with pixel-wise full-color 1/f
noise. The resulting images were 400 × 400 pixels, ensuring
that all images stimulated the same retinal area.

Behavioral Experiment: Match-to-category
Multi-level Verification

The first aim of this behavioral experiment was to finalize
our category taxonomy by assessing category status in
general and basic level advantage in particular. This en-
sured that categories we included in our taxonomy are
representative of the relationships present in real-world
taxonomies. We tested the category taxonomy listed
above and then eliminated members with ambiguous
category status. The taxonomy was pruned of nine sub-
ordinate categories (one for each basic) by eliminating
those subordinates with the lowest behavioral basic level
advantage (see Data Analysis section: antique car, stealth
plane, battleship, Eames chair, bunk bed, folding table,
bongos, Les Paul guitar, synthesizer). We used the result-
ing taxonomy (27 subordinate categories; Figure 4A) for
all subsequent analyses.

Participants. Ten participants (six women, aged 18–
35 years, including authors M. C. I. and M. R. G.) partic-
ipated in the first behavioral experiment. All volunteers
had normal or corrected-to-normal vision and provided
informed consent in compliancewith procedures approved
by the Stanford University institutional review board.
Nonauthor participants were compensated for their time.

Materials and experimental procedure. Analogous to
Experiment 1.

Data analysis. RTs less than 200 msec and greater than
2 sec were discarded from analysis (2% of data, no more
than 10% of trials from any participant). RTs for correct
trials (84% of trials) were transformed into z scores. To
test for a basic level advantage, we examined the differ-
ences in RTs to correctly verify an image as a member of
a superordinate, basic, or subordinate level category. We
also defined basic level advantage to be the RT difference
(in z scores) of basic level categorization compared to
subordinate level categorization and used this metric to
reject the subordinate level categories in each branch of
the hierarchy with the weakest basic level effects. Only
one of the remaining 27 basic level categories (biplane)

1432 Journal of Cognitive Neuroscience Volume 27, Number 7



had a negative basic level advantage, possibly because
this less typical plane is better categorized at the sub-
ordinate level (Jolicoeur et al., 1984).

Behavioral Experiment: Same–Different Subordinate
Level Categorization

Participants. Twenty individuals (nine women, aged
18–35 years) with normal or corrected-to-normal vision
participated in this experiment. None of the participants
took part in the fMRI experiment or in the first behavioral
experiment. All provided informed consent in compli-
ance with procedures approved by the Stanford Uni-
versity institutional review board and were compensated
for their time.

Materials and experimental procedure. Analogous to
Experiment 1.

Data analysis. RTs less than 200 msec and greater than
2 sec were discarded from analysis (<1% of data, no
more than 8% from any one participant). RTs were trans-
formed into z scores. We computed the average time
required to reject a pair of images as being from the
same subordinate level category and used this as a cate-
gory distance measure in the context of a classical MDS
analysis (criterion: metric stress).

fMRI Experiment

Participants. Seventeen volunteers (four women, aged
23–31 years, including authors M. C. I. and M. R. G.) with no
past history of psychiatric or neurological disorders and nor-
mal or corrected-to-normal vision participated in this expe-
riment. Participants gave informed written consent in
compliance with procedures approved by the Stanford Uni-
versity institutional review board. Except for the participating
authors, all participants received financial compensation.

Scanning parameters, preprocessing, experimental pro-
cedure, and ROIs. The second fMRI experiment was
conducted similarly to Experiment 1. Participants per-
formed five runs, with 27 blocks per run and eight images
per block. Over the course of the experiment, each par-
ticipant viewed five blocks from each of the 27 subordi-
nate level categories, for a total of 135 blocks. The order
of blocks, the number of repetitions in each block, and
the images in each block were counterbalanced across
runs and between participants.

fMRI Data Analysis

Within-category similarity (cohesion) and between-
category dissimilarity (distinctiveness), category boundary
effect, and correlation classifier. Performed analogously
to Experiment 1.

Statistical Analyses

For all our experiments, we used paired two-tailed t tests
when comparing observed effects against chance and
when establishing whether a significant difference exists
between two observed effects. We used Kolmogorov–
Smirnov tests to establish that no significant deviation
from normality exists for the distributions of all effects
to which t tests were applied. Because statistical tests
are made on a single number derived from the pattern
of voxels within an ROI per condition of interest and
these conditions are relatively few, we did not correct
for multiple comparisons within our ROI analyses.

We also used Friedman nonparametric tests to investi-
gate whether trends exist in data where the dependent
variable is ordinal but not continuously organized. All
statistical tests were implemented in MATLAB.

RESULTS

Experiment 1: Two Superordinate Categories—
Natural and Man-made

Behavioral Experiments

In our first experiment, we used a three-tiered taxonomic
hierarchy comprising two superordinate level (natural,
man-made), four basic level (dog, flower, plane, shoe),
and 32 subordinate level categories (e.g., Chihuahua,
stealth plane; Figure 1A).

To verify that our putative basic level categories re-
flect entry level concepts, we first conducted a match-to-
category behavioral experiment. As predicted, participants
were significantly faster to verify category membership at
the basic level (662 msec, SEM = 36 msec) than at the
superordinate (747 msec, SEM = 43 msec) or subordinate
(782 msec, SEM = 44 msec) levels (Figure 1C; basic >
superord.: t(18) = 5.1, p < .001; basic > subord.: t(18) =
8.6, p < .001). We also computed a measure of basic level
advantage for each of the 32 subordinate level categories,
defined as the RT difference (in z scores) of basic level cat-
egorization compared to subordinate and superordinate
level categorization. All 32 categories showed a basic level
advantage over the superordinate level (Figure 1D), and
all except three categories (cowboy boots, clogs, and
sunflowers) showed a basic level advantage over the sub-
ordinate level of the taxonomy (Figure 1E). These few
exceptions most likely represent less prototypical exem-
plars of their basic level category (Jolicoeur et al., 1984).

To map categories in terms of their behavioral sim-
ilarity, we next used a same–different subordinate level
categorization experiment to measure the perceptual
distance between all pairs of subordinate categories.
Reasoning that images in similar categories will take
longer to reject than images from dissimilar categories,
we used RTs to pairs of images in the “different” con-
dition to generate a distance metric between our sub-
ordinate categories. Consistent with prior work (Rosch
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et al., 1976), participants found objects within the same
basic category to be more similar to each other than to
stimuli in other basic categories (t(22) = 4.7, p < .001).
Furthermore, classical MDS applied to this distance
metric revealed that, in a two-dimensional solution, the
four basic level categories form separate clusters
(Figure 1B), with the first MDS dimension separating
the natural and man-made categories (superordinate
level).

These results replicated Rosch et al.’s (1976) original
findings for our object categories by demonstrating that
our taxonomy exhibits a clear basic level advantage and as
such is representative of hierarchically organized real-
world categories.

Neural Category Boundaries Favor Basic
Level Representations

Having verified the taxonomy behaviorally, we scanned
participants viewing these same 32 categories to find
out how neural category representations change across
taxonomic levels and across human ventral visual cortex.
Because task may influence entry level categorization
(Harel, Kravitz, & Baker, 2014; Mace et al., 2009; Mack
et al., 2009), we asked participants to perform a 1-back
repetition task in the scanner (i.e., no explicit categoriza-
tion task) used solely to ensure they maintained attention
and alertness during the experiment. Our analyses fo-
cused on object- (LOC), scene- (PPA, RSC, TOS), and
face-selective (FFA) regions as well as early visual cortex
areas (V1, V2, V3v, hV4).

Our first task was to assess the strength of category
representations at each taxonomic level in terms of their
cohesion and distinctiveness. According to Rosch et al.
(1976), categories form such that they concurrently max-
imize within-category similarity (cohesion) and between-
category dissimilarity (distinctiveness). To quantify the
interplay between cohesion and distinctiveness and
how they give rise to category distinctions, we defined
the category boundary effect (Kriegeskorte et al., 2008)
as the difference between cohesiveness and distinctive-
ness across a taxonomic level, averaged across all catego-
ries from that level. We computed the category boundary
effect for each taxonomic level (subordinate, basic,
superordinate) in each brain ROI.

We found that the category boundary effect is generally
higher at the subordinate and basic levels compared to
the superordinate level across visual cortex, especially in
higher visual areas (Figure 2A; subordinate > super-
ordinate: V1, t(9) = 2.5, p = .032; V2, t(9) = 2.5, p = .035;
V3v, t(9) = 1.9, p = .089; hV4, t(9) = 1.7, p = .133; LOC:
t(9) = 5.6, p < .001; FFA: t(9) = 4.0, p = .003; PPA: t(9) =
4.7, p= .001; TOS: t(9) = 2.1, p= .067; RSC: t(9) = 3.5, p=
.007; basic > superordinate: V1, t(9) = 2.2, p = .058; V2,
t(9) = 2.8, p = .022; V3v, t(9) = 2.8, p = .020; hV4, t(9) =
2.8, p= .021; LOC: t(9) = 7.6, p< .001; FFA: t(9) = 3.6, p=
.006; PPA: t(9) = 6.5, p < .001; TOS: t(9) = 3.3, p = .009;

RSC: t(9) = 4.8, p= .001). Moreover, the category boundary
effect increased in LOC compared to early visual areas at
all levels of the taxonomy (subordinate: LOC > V1, t(9) =
5.7, p < .001; LOC > V2, t(9) = 7.3, p < .001; LOC > V3v,
t(9) = 9.7, p < .001; LOC > hV4, t(9) = 5.7, p < .001;
basic: LOC > V1, t(9) = 6.5, p < .001; LOC > V2, t(9) =
7.3, p< .001; LOC> V3v, t(9) = 8.3, p< .001; LOC> hV4,
t(9) = 5.5, p < .001; superordinate: LOC > V1, t(9) = 4.7,
p= .001; LOC>V2, t(9)= 5.4, p= .001; LOC>V3v, t(9)=
5.7, p = .001; LOC > hV4, t(9) = 2.5, p = .032). Taken
together, these results suggest that categories become
more sharply distinguishable as we move up the visual
hierarchy and that, throughout ventral visual cortex, activity
patterns adhere better to subordinate and basic level cate-
gories than to the more general (superordinate) levels of
representation.
To characterize the difference between our taxonomic

levels more clearly, we looked at the difference between
the category boundary effect at the basic level compared
to the other two levels (Figure 2C and D). We found that
category boundary is always higher at the basic level than
the superordinate across early visual areas and LOC.
Moreover, subordinate category boundary started out
with advantage over the basic level (generally negative
values for V1; Figure 2C), but this advantage disappeared
as we move up the visual cortical hierarchy (generally
positive values for LOC; Figure 2C). Interestingly, the
basic level gained an advantage over both the subordi-
nate and superordinate levels as we move up the visual
hierarchy from V1 to LOC (increasing trends in category
boundary effect difference from V1 to LOC for basic –
subord.: p < .001, basic – superord.: p < .001; Friedman
nonparametric tests).
Overall, our results suggest that the neural representa-

tion of object categories in occipitotemporal cortex is
highly dynamic across the taxonomic spectrum. First,
we find evidence supporting both of our initial predic-
tions: The subordinate and basic levels are both strongly
represented, with the former being especially empha-
sized in early visual cortex, whereas the latter becoming
more prominent in object-selective LOC. Second, we
uncover a gradual trade-off between the subordinate
and basic levels, which appears to develop as we move
up the visual hierarchy, with a basic level advantage
arising in object-selective cortex.

Category Cohesion and Distinctiveness across
Occipitotemporal Cortex

The category boundary effect provides an intuitive mea-
sure of how categories group at each taxonomic level.
However, this effect comprises contributions from both
cohesion and distinctiveness, which describe the similar-
ity of object representations within and between catego-
ries, respectively. Historically, it has been hypothesized
that basic categories provide the best behavioral dif-
ferentiation between concepts because they combine
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the strengths but not the weaknesses of both subordi-
nate and superordinate categories (Rosch, 1978): Mem-
bers of subordinate categories, although very similar to
each other (high cohesion), share too many features
that overlap with members of other categories (low dis-
tinctiveness), and exemplars of superordinate categories,
although very different from one another (high distinc-
tiveness), share too few features in common with each
other to successfully generalize across the entire category
(low cohesion). To determine whether activity patterns in
ventral visual cortex conform to this principle, we com-
puted the average cohesion and distinctiveness of the
activity patterns evoked by our stimuli for each taxonomic
level.

We found that cohesion generally decreased with level
of specificity across all ROIs (Figure 2B, top) and was sig-
nificantly weaker at the superordinate level compared to
the other two levels in the taxonomy in all high-level
areas and hV4 (superordinate < basic and subordinate
LOC: t(9) = 7.3, p < .001; FFA: t(9) = 4.4, p = .005;
PPA: t(9) = 6.9, p < .001; TOS: t(9) = 4.1, p = .009;
RSC: t(9) = 4.8, p = .003; hV4: t(9) = 3.9, p = .011). This
result is consistent with the expectation that objects
share more low-level features in common at the subordi-
nate level (Kriegeskorte et al., 2008; Koustaal et al.,
2001). Concurrently, between-category dissimilarity (dis-
tinctiveness) generally increased with taxonomic level
(Figure 2B, bottom) and was significantly weaker at the

Figure 2. Experiment 1: neural category boundaries favor basic level representations. (A) Category boundary effect for neural activity patterns at
each taxonomic level and in each ROI. Inset shows same analysis for image feature descriptors: C = color histograms; G = GIST features; H = HOG
features; S = SIFT features. The neural representation of object categories in occipitotemporal cortex was highly dynamic across the taxonomic
spectrum and was not fully explained by low-level image features. The subordinate and basic levels were together strongly represented, with the
former being especially emphasized in early visual cortex, whereas the latter becoming more prominent in LOC. (B) Cohesion and distinctiveness for
neural activity patterns at each taxonomic level and in each ROI. Inset shows same analyses for image feature descriptors. Cohesion generally
decreased with taxonomic level and was significantly weaker at the superordinate level compared to the other two levels in all ROIs, which suggests
that object representations become less homogenous within their category across visual cortex. Distinctiveness generally increased with taxonomic
level and was significantly weaker at the subordinate level compared to the basic and superordinate levels, which suggests that object representations
become better differentiated across categories in later visual areas. (C, D) Category boundary effect difference between basic level and subordinate
and superordinate levels. We uncovered a gradual trade-off between the subordinate and basic levels, which appears to develop as we move up the
visual hierarchy, with a trending basic level advantage arising in object-selective cortex. (E, F) Cohesion difference between basic level and
subordinate and superordinate levels. (G, H) Distinctiveness difference between basic level and subordinate and superordinate levels. The category
boundary difference appears to be driven by separate components of the category boundary effect, depending on taxonomic level. The trending
advantage of the basic level over the subordinate in later visual areas was mainly because of the sharp increase in distinctiveness between early visual
areas and LOC, whereas the clear advantage of the basic level over the superordinate was mainly because of the sharp increase in cohesion between
early visual areas and LOC. *p < .05, **p < .01, ***p < .001, †p < .10, ns = not significant. Error bars: 95% confidence interval. Shaded graphs
indicate a significant increase from V1 to LOC.
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subordinate level compared to the basic and superordi-
nate levels in all ROIs (subordinate < basic and super-
ordinate LOC: t(9) = 7.7, p < .001; FFA: t(9) = 4.7, p =
.004; PPA: t(9) = 6.6, p < .001; TOS: t(9) = 5.2, p =
.002; RSC: t(9) = 3.9, p = .011; V1: t(9) = 4.7, p = .003;
V2: t(9) = 5.9, p < .001; V3v: t(9) = 4.1, p = .008; hV4:
t(9) = 5.7, p = .001). In other words, these results are
in general agreement with the assertion that the basic
level may be privileged because it strikes the best balance
between category cohesion and distinctiveness (Rosch,
1978).

Although the general pattern of higher cohesion for
subordinate and basic level categories and higher distinc-
tiveness for basic and superordinate level categories held
across our ROIs, the degree of cohesion and distinctive-
ness changed across visual areas. Interestingly, category
cohesion increased in LOC compared to V1 at all levels
of the taxonomy (LOC > V1: subord., t(9) = 5.8, p <
.001; basic: t(9) = 6.5, p < .001; superord.: t(9) = 4.9,
p< .001), suggesting that object representations become
overall more homogenous within their category in later
visual areas. Furthermore, distinctiveness increased in
LOC compared to V1 at all levels of the taxonomy (LOC >
V1: subord., t(9) = 3.5, p= .006; basic: t(9) = 6.5, p< .001;
superord.: t(9) = 4.5, p= .002), which suggests that object
representations become better differentiated across cate-
gories in later visual areas. Thus, in keeping with Rosch
et al.’s (1976) assertion that good object categories are rep-
resented such that theymaximize within-category similarity
and between-category dissimilarity, our results suggest that
LOC appears to be producing stronger category represen-
tations than earlier visual areas.

Do these changes in cohesion and distinctiveness favor
the basic level? To assess this, we compared cohesion
and distinctiveness across both taxonomic levels and visual
areas (Figure 2E–H). The advantage of the basic level over
the subordinate in later visual areas was mainly because of
the sharp increase in distinctiveness between early visual
areas and LOC (Figure 2G; increasing trend in distinctive-
ness difference from V1 to LOC for basic – subord.: p <
.001; Friedman nonparametric test). Cohesion, on the
other hand, was fairly stable across the same visual areas
(Figure 2E; no increasing trend in cohesion difference
from V1 to LOC for basic – subord.: p = .736; Friedman
nonparametric test). Conversely, the advantage of the
basic level over the superordinate was mainly because
of the sharp increase in cohesion between early visual
areas and LOC (Figure 2F; increasing trend in cohesion
difference from V1 to LOC for basic – superord.: p <
.001; Friedman nonparametric test), whereas distinctive-
ness remained relatively unchanged (Figure 2H; no in-
creasing trend in distinctiveness difference from V1 to
LOC for basic – superord.: p = .231; Friedman nonpara-
metric test). This pattern of results aligns well with both
theoretical considerations of category as well as intui-
tions about subordinate and superordinate categories.
As predicted, we show that a trade-off exists between

category cohesion and category distinctiveness at the
two extremes of our taxonomy (subordinate and super-
ordinate levels), with the basic level potentially striking
the best balance between these two quantities by en-
compassing both strong within-category similarity and
strong between-category dissimilarity. In short, our data
suggest that the basic level simultaneously gains an
advantage over both the subordinate and superordi-
nate levels as we move up the visual hierarchy from V1
to LOC.

The Contribution of Low-level Visual Features

The changes in cohesion and distinctiveness across visual
cortex suggest that LOC may be optimizing both of these
two components of what constitutes a good category. To
determine the extent to which the patterns of results
obtained in LOC are captured by low-level image fea-
tures, we computed category boundary effect, cohesion,
and distinctiveness in an analogous fashion for image
descriptor features extracted from our stimulus images:
color histograms, GIST (Oliva & Torralba, 2001), HOG
(Dalal & Triggs, 2005), and SIFT (Lowe, 2004).
We found that all image descriptor category bound-

aries clearly favored the subordinate level (Figure 2A,
inset). As such, these boundaries were similar to early
visual cortex representations, but they did not capture
category representations in LOC. By contrast, neural pat-
terns in LOC exhibited a trend for reversing the prefer-
ence of subordinate and basic levels, favoring the latter
(basic > subordinate LOC: t(9) = 2.0, p = .072).
Furthermore, we found that, for all our feature descrip-

tors, cohesion has high positive values for all levels of the
taxonomy. However, concomitantly, between-category
similarity was also very high (Figure 2B, insets), indicat-
ing poor distinctiveness at the image descriptor level. In
other words, a high degree of similarity exists between all
our stimulus images in terms of their low-level features,
irrespective of category, and across all levels of the taxon-
omy (i.e., distinctions between all categories are very
slight). Thus, although image features may partly explain
category cohesion, they do a poor job at characterizing
the distinctiveness between object categories we observe
in the neural data. This lack of distinctiveness makes low-
level image features a poor candidate for explaining the
results we obtained in LOC, which show the basic level
gaining an advantage compared to the other two levels
in our taxonomy.
Our results are consistent with the predictions put

forth by Rosch et al. (1976) based on behavioral ob-
servations: Object categories are represented such that
they maximize within-category similarity and between-
category dissimilarity. This property is not solely due to
low-level image features; it holds across multiple levels of
category generality (subordinate, basic, superordinate)
and is, in fact, enhanced as we move up the ventral visual
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stream: Cohesion and distinctiveness increase in object-
selective areas compared to early visual cortex.

Correlation Classification Shows Basic Level Advantage
in LOC

Our analyses so far suggest that, to understand category
organization in visual cortex, we must consider cohesion
and distinctiveness together. Furthermore, the category
boundary analysis used here and by others (Kriegeskorte
et al., 2008) assumes that cohesion and distinctiveness
combine linearly to give rise to category distinctions. This
linearity assumption may not be strictly true, raising the
possibility that we are underestimating (or overestimat-
ing) the degree to which the activity patterns adhere to
a particular taxonomic level. Thus, to complement our
category boundary analysis, we also used a data-driven

method that weighs cohesion and distinctiveness auto-
matically, without any prior knowledge provided by the
experimenters.

In particular, we implemented an MVPA correlation
classifier to decode category identity from each ROI at
each taxonomic level (subordinate, basic, superordinate).
We found that the information present in voxel-level neural
patterns was sufficient to distinguish between categories at
all taxonomic levels and in all brain regions considered
above chance: object-, scene-, and face-selective areas
(LOC, FFA, PPA, RSC, TOS) as well as early visual areas
(V1, V2, V3v, hV4; Figure 3A).

Critically, however, we also found that information
about object category did not increase monotonically
with category generality (taxonomic level) in all brain
areas. In LOC (and, to a lesser extent, in FFA and RSC),
accuracy was highest at the basic level, and we saw a sig-

Figure 3. Experiment 1: MVPA classification reveals that object categories are most distinct at the basic level in LOC. (A) Proportion above chance
of correct decoding responses for all levels of the taxonomy (chance is zero): subordinate, basic, and superordinate. Top insets denote whether
differences between adjacent bars are significant. Category information was discernible significantly above chance at all taxonomic levels and
in all ROIs, with higher visual areas generally showing larger values. Highest decoding accuracies were seen in object-selective LOC, but other
high-level visual areas that are known to be scene- and face-selective (PPA, TOS, RSC, FFA) also contained category information at all levels. Decoding
at the basic level was easier than at the subordinate and superordinate levels in LOC, RSC, and FFA (shaded), but not in any of the other
brain areas considered. (B) Confusion matrix example: LOC basic level classification. Basic categories were ordered on the axes according to
the pictograms: dogs, flowers, planes, and shoes. At the subordinate level, within each basic category, the eight corresponding subordinates
were listed alphabetically. At the superordinate level, the “natural object” category was listed first, and the “man-made object” category was
listed second. (C) Confusion matrices for decoding analysis in A: top = subordinate level; middle = basic level; bottom = superordinate level.
In all regions, when classification errors did occur, the confusions were more likely to be within the same basic level than between basic levels
(e.g., breeds of dogs were commonly confused with other breeds of dogs but not with types of flowers, shoes, or planes), with the effect
most salient in LOC. The basic level matrices show that confusions become more common within the basic level as we move up the visual
hierarchy. *p < .05, **p < .01, ***p < .001, ns = not significant. Error bars: 95% confidence interval. SUBORD. = subordinate; SUPERORD. =
superordinate.

Iordan et al. 1437



nificant drop in decoding for both the subordinate and
superordinate levels, compared to the basic level (LOC:
basic > subord., t(9) = 11.1, p< .001; basic > superord.,
t(9) = 4.5, p= .002; FFA: basic > subord., t(9) = 4.1, p=
.003; basic > superord., t(9) = 3.0, p= .014; RSC: basic >
subord., t(9) = 3.9, p = .004; basic > superord., t(9) =
2.6, p = .028). Moreover, we found that, in all regions,
when classification errors did occur, the confusions were
more likely to be within the same basic level than be-
tween basic levels (i.e., breeds of dogs were commonly
confused with other breeds of dogs but not with types
of flowers, shoes, or planes; Figure 3B), with the effect
most salient in LOC (within basic confusions > between
basic confusions: LOC, t(9) = 15.9, p < .001; TOS, t(9) =
5.6, p < .001; PPA, t(9) = 5.9, p < .001; RSC, t(9) = 4.2,
p = .002; FFA, t(9) = 4.1, p = .003; V1, t(9) = 3.1, p =
.013; V2, t(9) = 4.5, p = .001; V3v, t(9) = 4.9, p < .001;
hV4, t(9) = 6.3, p < .001).

The trends observed in the correlation classifier decod-
ing results suggest that basic level categories are more
clearly delineated at the voxel population level in object-
selective areas, compared to the other two levels in our
taxonomy. This result provides a quantitative validation
to the intuition provided by the category boundary analy-
sis that the basic level represents an optimal level of
specificity in object taxonomy in object-selective cortex.

Finally, the basic level is most distinguishable in LOC
using the MVPA analysis, but not using the category
boundary effect analysis. This finding suggests that MVPA
did not weigh cohesion and distinctiveness equally when
assigning category labels to neural activations, and thus,
cohesion and distinctiveness might not contribute equally
to generating category boundaries in LOC.

Experiment 2: Three Superordinate Categories
(Vehicles, Furniture, and Musical Instruments)—
Removing the Contribution of Real-world Size,
Animacy, and Natural Backgrounds

Behavioral Experiments

The stimulus set used in Experiment 1 comprised catego-
ries that straddle the boundaries of two main dimensions
of selectivity known to affect the responses to objects in
occipitotemporal cortex: animacy and real-world size. To
ensure that these dimensions have no effect on our re-
sults as well as to demonstrate the generalizability of
our results from Experiment 1 to additional categories,
we constructed a new three-tiered taxonomic hierarchy
comprising exclusively big and inanimate objects: three
superordinate level categories (vehicles, furniture, musical
instruments), nine basic level categories (cars, airplanes,
ships, chairs, beds, tables, drums, guitars, pianos), and 36
subordinate level categories (four types of each of the
nine basic level categories). In addition, to ensure that
our effects were driven by objects and not by their natural-
istic backgrounds, we superimposed our new stimuli on
meaningless 1/f noise backgrounds.

To finalize our category taxonomy as well as to verify that
our putative basic level categories reflect entry level con-
cepts, we conducted a delayedmatch-to-category behavioral
experiment, similar to the one used in Experiment 1. Our
strategy was to test our initial category taxonomy and then
eliminate members with ambiguous category status. To
prune our taxonomy, we defined the basic level advantage
to be the RT difference (in z scores) of basic level categoriza-
tion compared to subordinate level categorization (Figure 4E).
We then used this metric to reject the subordinate with the
weakest basic level advantage of the four putative subordi-
nate level categories in each basic (eliminating nine sub-
ordinate categories of the initial 36), resulting in 27 total
subordinate level categories (Figure 4A). Only one of the
remaining subordinates (biplane) had a negative basic level
advantage, possibly because this less typical plane is better
categorized at the subordinate level ( Jolicoeur et al., 1984).
To test for the strength of the basic level advantage in

our pruned taxonomy, we examined the differences in RTs
to correctly verify an image as a member of a subordinate,
basic, or superordinate level category. We observed strong
basic level effects overall (Figure 4C): Participants were sig-
nificantly faster to verify category membership at the basic
level (566 msec, SEM= 36msec) than at the superordinate
level (623 msec, SEM = 39 msec; basic > superord.:
t(18) = 6.8, p < .001). Similarly, basic level categorization
was faster than subordinate level categorization (618 msec,
SEM = 36 msec; basic > subord.: t(18) = 6.2, p < .001).
To map categories in terms of their behavioral similar-

ity and dissimilarity, we next used a same–different sub-
ordinate level categorization experiment to measure the
perceptual distance between all pairs of subordinate cat-
egories. Reasoning that images in similar categories will
take longer to reject than images from dissimilar catego-
ries, we used RTs to pairs of images in the “different”
condition to generate a distance metric between our sub-
ordinate categories. Consistent with prior work (Rosch
et al., 1976), participants found objects within the same
basic category to be more similar to each other than to
stimuli in other basic categories (t(74) = 39.0, p < .001).
Furthermore, classical MDS applied to this distance
metric revealed that, in a two-dimensional projection,
each of the nine basic level categories are clearly sepa-
rated from one another (Figure 4B).
Similar to Experiment 1, these results replicated Rosch

et al.’s (1976) original findings for our new set of object
categories by demonstrating that our second taxonomy
also exhibits a clear basic level advantage after removing
the contribution of animacy, image backgrounds, and real-
world size as described by others (Konkle & Caramazza,
2013; Konkle & Oliva, 2012).

Neural Category Boundaries Equally Favor Subordinate
and Basic Level Representations

We scanned participants viewing these same three super-
ordinate level categories to assess how neural category
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representations change across taxonomic levels and
across human ventral visual cortex. As in Experiment 1,
participants performed a 1-back repetition task in the
scanner (i.e., no explicit categorization task). Again, our
analyses focused on object- (LOC), scene- (PPA, RSC,
TOS), and face-selective (FFA) regions as well as early
visual cortex areas (V1, V2, V3v, hV4).

Our first task for the new taxonomy was to reassess the
strength of category representations at each taxonomic
level. As such, we computed the category boundary effect
for each taxonomic level (subordinate, basic, superordi-
nate) and each brain ROI. We found that, as in Experi-
ment 1, the category boundary effect was largest at the
subordinate level in early visual areas, but this trend

Figure 4. Experiment 2: stimulus set and behavioral results. (A) The stimulus set was organized according to a three-level taxonomic hierarchy
comprising 27 subordinate level (most specific, outside layer), nine basic level (middle layer), and three superordinate level (most general, center)
categories. Each subordinate category consisted of 40 color photographs, with a representative image shown. Objects varied in color and pose.
(B) Same–different subordinate level categorization behavioral experiment. We applied classical MDS to the perceptual distance between subordinate
categories measured as z scored RTs. In a two-dimensional solution, all nine basic level categories form separate clusters. (C–E) We used a match-to-
category behavioral experiment to finalize our category taxonomy by assessing category status in general and basic level advantage in particular.
We tested a larger category taxonomy (36 subordinate categories) and then eliminated members with ambiguous category status. (C) Participants
verified category membership significantly faster at the basic level than at the superordinate or subordinate levels. (D) RT difference between basic and
superordinate categorization conditions. Positive values indicate basic level advantage. Participants identified almost all stimulus categories faster
at the basic level than at the superordinate level. (E) RT difference between basic and subordinate categorization conditions. Positive values indicate
basic level advantage. Participants identified almost all stimulus categories faster at the basic level than at the subordinate level. We used this metric to
reject the subordinate with the weakest such effect of the putative four subordinate level categories in each basic level (shaded categories were
eliminated). Finally, only 1 of the remaining 27 basic level categories (biplane) had a negative basic level advantage, possibly because this less typical
plane is better categorized at the subordinate level ( Jolicoeur et al., 1984). ***p < .001. Error bars: 95% confidence interval. Subord. = subordinate;
Superord. = superordinate.
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disappeared in higher visual areas compared to the basic
level (Figure 5A; subordinate > basic: V1, t(16) = 5.7,
p < .001; V2, t(16) = 4.2, p < .001; V3v, t(16) =
3.8, p = .002; hV4, t(16) = 1.4, p = .186; LOC, t(16) = 0.3,
p = .754; FFA, t(16) = 0.7, p = .525; PPA, t(16) = 2.6,
p = .018; TOS, t(16) = 0.1, p = .920; RSC, t(16) =
0.6, p = .583; subordinate > superordinate: V1, t(16) = 3.5,
p = .003; V2, t(16) = 3.0, p = .008; V3v, t(16) = 2.7, p =
.016; hV4, t(16) = 1.5, p= .161; LOC, t(16) = 2.1, p= .053;
FFA, t(16) = 0.6, p= .533; PPA, t(16) = 0.7, p= .501; TOS,
t(16) = 2.5, p = .022; RSC, t(16) = 1.3, p = .203). More-
over, the category boundary effect increased in LOC com-

pared to V1 at all levels of the taxonomy (LOC > V1:
subord., t(16) = 2.9, p = .011; basic, t(16) = 4.1, p <
.001; superord., t(16) = 2.6, p= .021). These results again
suggest that categories become more sharply distin-
guishable as we move up the visual hierarchy, and fur-
thermore, early visual areas appear to favor subordinate
distinctions, whereas in later areas this difference dis-
appears between subordinate and basic levels.
This trend was, in fact, an enhanced version of our

findings in Experiment 1: When comparing the difference
between category boundaries at the basic level versus
the other two levels, it became clear that the relative

Figure 5. Experiment 2: After controlling for animacy, real-world size, and naturalistic backgrounds, neural category boundaries still show that basic
level representations gain an increasing advantage as we move up the ventral visual stream. (A) Category boundary effect for neural activity patterns
at each taxonomic level and in each ROI. Inset shows same analysis for image feature descriptors: C = color histograms; G = GIST features;
H = HOG features; S = SIFT features. Early visual areas favored subordinate distinctions, whereas, in later areas, this difference disappeared between
subordinate and basic levels. (B) Cohesion and distinctiveness for neural activity patterns at each taxonomic level and in each ROI. Inset shows
same analyses for image feature descriptors. Cohesion generally decreased with taxonomic level and was significantly weaker at the superordinate
level compared to the other two levels in all ROIs, which suggests that object representations become less homogenous within their category across
visual cortex. Distinctiveness generally increased with taxonomic level and was significantly weaker at the subordinate level compared to the basic
and superordinate levels in all ROIs, except for FFA, V1, and V2. (C, D) Category boundary effect difference between basic level and subordinate
and superordinate levels. We observed an enhanced version of our findings in Experiment 1: When comparing the difference between category
boundaries at the basic level versus the other two levels, it becomes apparent that the basic level gains an advantage over both the subordinate and
superordinate levels as we move up the visual hierarchy from V1 to LOC. (E, F) Cohesion difference between basic level and subordinate and
superordinate levels. (G, H) Distinctiveness difference between basic level and subordinate and superordinate levels. In contrast to Experiment 1,
the category boundary difference appears to be driven by both components of the category boundary effect. The advantage of the subordinate level
over the basic level disappeared in later visual areas, mainly because of the sharp increase in distinctiveness between early visual areas and LOC,
whereas the advantage of the basic level over the superordinate level remained strong because of an increase in both cohesion and distinctiveness
between early visual areas and LOC. *p < .05, **p < .01, ***p < .001, ns = not significant. Error bars: 95% confidence interval. Shaded graphs
indicate a significant increase from V1 to LOC.
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difference between the basic and subordinate levels de-
creased much more sharply and ultimately disappeared
as we move up the visual hierarchy from V1 to LOC.
Simultaneously, the difference between basic and super-
ordinate levels strongly increased along the visual hierar-
chy (Figure 5C and D; increasing trends in category
boundary effect difference from V1 to LOC for basic –
subord.: p < .001; basic – superord.: p < .001; Friedman
nonparametric tests). In addition, category boundary was
generally higher at the basic level than the superordinate
throughout visual cortex, and interestingly, subordinate
category boundary started out with advantage over the
basic level (generally negative values for V1; Figure 5C),
but this advantage disappeared as we moved up the visual
cortical hierarchy (zero and slightly positive values for LOC;
Figure 5C).
Overall, the second experiment confirms our initial re-

sults: The subordinate and basic levels are both strongly
represented, with the former being especially empha-
sized in early visual cortex whereas the latter gaining an
equally strong representation in LOC. Moreover, we notice
a gradual trade-off between the subordinate and basic
levels, which becomes apparent as we move up the visual
hierarchy.

Category Cohesion and Distinctiveness across
Occipitotemporal Cortex

Next, we replicated the analyses that investigate each
component of the category boundary effect separately
(cohesion and distinctiveness). Again, we found that co-
hesion decreased with taxonomic level across all ROIs
(Figure 5B, top), such that it was significantly weaker at
the superordinate level compared to the other two levels
in the taxonomy in all ROIs (superordinate < basic and
subordinate V1: t(16) = 6.9, p < .001; V2: t(16) = 6.2,
p < .001; V3v: t(16) = 6.9, p < .001; hV4: t(16) = 6.5, p <
.001; LOC: t(16) = 6.0, p< .001; FFA: t(16) = 2.5, p= .026;
PPA: t(16) = 7.1, p< .001; TOS: t(16) = 6.4, p< .001; RSC:
t(16) = 6.3, p < .001). Concurrently, between-category
dissimilarity (distinctiveness) generally increased with
taxonomic level (Figure 5B, bottom), such that it was
significantly weaker at the subordinate level compared to
the basic and superordinate levels in all ROIs, except for
FFA, V1, and V2 (subordinate < basic and superordinate
V1: t(16) = 1.5, p = .142; V2: t(16) = 1.9, p = .080; V3v:
t(16)=2.6,p=.018; hV4: t(16)=3.1,p=.007; LOC: t(16)=
3.3,p=.005; FFA: t(16)=1.6,p=.130; PPA: t(16)=6.4,p<
.001; TOS: t(16) = 3.5, p= .003; RSC: t(16) = 4.2, p< .001).
In other words, Experiment 2 confirms our initial findings:
The ventral visual cortex is optimizing category representa-
tions, and object categories are represented such that they
maximize within-category similarity and between-category
dissimilarity, with the basic level striking the best balance
between category cohesion and distinctiveness.
Furthermore, in contrast to Experiment 1 where cohe-

sion increased in LOC compared to V1 at all levels of the

taxonomy, in Experiment 2, we observed this effect only
at the basic level but not at the subordinate or super-
ordinate levels (LOC > V1: subord., t(16) = 1.2, p =
.249; basic, t(16) = 2.9, p = .012; superord., t(16) =
0.6, p = .551), suggesting that object representations
become overall more homogenous within their basic cat-
egory in later visual areas. Note that this phenomenon
cannot be explained by animacy, real-world size, or image
backgrounds, as our stimulus set in this experiment did
not vary across these factors. As in Experiment 1, distinc-
tiveness increased in LOC compared to V1 at all levels of
the taxonomy (LOC > V1: subord., t(16) = 3.3, p = .005;
basic, t(16) = 5.7, p < .001; superord., t(16) = 4.1, p <
.001), which suggests that object representations become
better differentiated across categories in later visual
areas, regardless of taxonomic level. In other words, basic
level category representations benefit from both in-
creased cohesion and distinctiveness as we move up
the ventral visual stream, whereas subordinate and super-
ordinate categories only exhibit increased distinctiveness,
suggesting a potential advantage for the basic level in
higher visual areas.

To further investigate whether changes in cohesion
and distinctiveness favor the basic level, we compared
these quantities across both taxonomic level and visual
areas (Figure 5E–H). The advantage of the basic level
over the subordinate level in later visual areas was again
mainly because of the sharp increase in distinctiveness
betweenearly visual areas andLOC(Figure5G;basic– subord.
distinctiveness increase from V1 to LOC: p < .001;
Friedman nonparametric test). Interestingly, however,
cohesion also exhibited a slight increase as we moved up
the visual stream, albeit much less so than distinctiveness
(Figure 5E; basic – subord. cohesion increase from V1 to
LOC: p = .015; Friedman nonparametric test). This sug-
gests that, although the contribution of cohesion to the
difference between subordinate and basic level repre-
sentations is small, this component nonetheless exerts a
quantifiable influence in the category representations we
observed.

Whereas, in Experiment 1, the advantage of the basic
level over the superordinate was mostly because of an
increase in cohesion, here, the same advantage was be-
cause of an increase in both cohesion and distinctive-
ness between early visual areas and LOC (Figure 5F
and H; increasing trends in cohesion and distinctiveness
difference from V1 to LOC for cohesion basic – super-
ord.: p < .001, distinctiveness basic – superord.: p <
.001; Friedman nonparametric tests). It is possible that,
in Experiment 1, we were unable to detect this emerging
distinctiveness advantage for the basic level over the
superordinate because our “natural object” category in-
cluded both animate and inanimate stimuli, which were
overall more distinctive and thus obscured a more subtle
change between levels.

Overall, our results replicate our findings in Experi-
ment 1, which show that a trade-off exists between
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category cohesion and category distinctiveness at the two
extremes of our taxonomy (subordinate and super-
ordinate levels), with the basic level potentially striking
the best balance between these two quantities by encom-
passing both strong within-category similarity and strong
between-category dissimilarity. In short, our data suggest
that the basic level simultaneously gains an advantage
over both the subordinate and superordinate levels as
we move up the visual hierarchy from V1 to LOC.

The Contribution of Low-level Visual Features

Similar to Experiment 1, we sought to show that the pat-
terns of results obtained in LOC were not attributed to
low-level image features. As such, we computed category
boundary effect, cohesion, and distinctiveness in an anal-
ogous fashion for image descriptor features extracted
from our stimulus images: color histograms, GIST (Oliva
& Torralba, 2001), HOG (Dalal & Triggs, 2005), and SIFT
(Lowe, 2004). Here, we found an enhanced version of
our findings from Experiment 1: Descriptor category
boundaries strongly favored the subordinate level, thus
more closely capturing early visual cortex representations
(Figure 5A, inset). By contrast, neural patterns in LOC,
TOS, PPA, and RSC exhibited a trend for reversing the
preference of subordinate and basic levels, favoring the
latter.

Furthermore, we once again found that, for all our fea-
ture descriptors, both cohesion and distinctiveness had
high positive values for all levels of the taxonomy. This
implies that a high degree of similarity exists between
all our stimulus images in terms of their low-level fea-
tures, even among categories that were highly distinctive
in our neural data. Thus, although image features may
partly explain cohesion, they do a poor job at character-
izing the distinctiveness between object categories we
observe in the neural data.

Correlation Classification Shows Basic Level Advantage
in LOC

Finally, as we did in Experiment 1, we used a more data-
driven approach to assess category boundaries by imple-
menting an MVPA correlation classifier to decode category
identity from each ROI at each taxonomic level (sub-
ordinate, basic, superordinate). We found that the informa-
tion present in voxel-level neural patterns was sufficient to
distinguish above-chance between categories at all levels in
the hierarchy and in all brain regions considered: object-,
scene-, and face-selective (LOC, FFA, PPA, RSC, TOS) areas,
as well as early visual areas (V1, V2, V3v, hV4; Figure 6A).

Critically, however, we again found that information
about object category did not increase monotonically
with category generality (taxonomic level) in all brain
areas. In LOC, accuracy was highest at the basic level,
and we saw a significant drop in decoding for both the
subordinate and superordinate levels, compared to the

basic level (LOC: basic > subord., t(16) = 2.4, p =
.031; basic > superord., t(16) = 4.4, p< .001). Moreover,
we found that, in all regions, when classification errors
did occur, the confusions were more likely to be within
the same basic level than between basic levels (i.e., types
of cars were commonly confused with other types of cars
but not with types of ships, for example; Figure 6B), with
the effect most salient in LOC (within basic confusions >
between basic confusions: V1, t(16) = 5.3, p < .001; V2,
t(16)=5.7, p< .001; V3v, t(16)= 6.3, p< .001; hV4, t(16)=
5.1, p< .001; LOC, t(16) = 5.5, p< .001; FFA, t(16) = 4.4,
p< .001; TOS, t(16) = 6.3, p< .001; PPA, t(16) = 7.7, p<
.001; RSC, t(16) = 6.9, p < .001).
Our correlation classifier decoding results mirror the

findings from Experiment 1, which suggest that the basic
level represents an optimal level of specificity in object tax-
onomy in object-selective cortex. Furthermore, we again
see evidence thatMVPAdid not weigh cohesion anddistinc-
tiveness equally when assigning category labels to neural
activations, because decoding produces a stronger advantage
for the basic level than the category boundary analysis. This
suggests that cohesion and distinctiveness might not con-
tribute equally to generating category boundaries in LOC.
Together, our two experiments show that category

representations change as a function of taxonomic level
across the span of the human ventral visual processing
stream: Initially, subordinate categories are more distin-
guishable in early visual areas, but this advantage dimin-
ishes in later areas, and this is because of changes in both
category cohesion and distinctiveness between visual
areas. Most importantly, by testing two separate taxon-
omies, each representative of real-world hierarchical
organization of objects, we show that this effect is robust,
generalizable, not fully explained by low-level visual fea-
tures, and persists after eliminating image backgrounds
and removing the contribution of animacy and real-world
size.

DISCUSSION

Our work establishes a link between the neural represen-
tation of object categories in occipitotemporal cortex and
human object taxonomy. We achieve this by showing
that, for two category taxonomies that exhibit a clear be-
havioral basic level advantage, category representations
change as a function of taxonomic level as we move up
the ventral visual cortical hierarchy. This provides evi-
dence that basic level structure may be an emergent
property of the human visual system.
Consistent with the tenets of categorization theory

(Rosch et al., 1976), patterns in high-level visual cortex
adhere to the principle of simultaneously maximizing
within-group similarity and between-group dissimilarity.
Moreover, our results provide the first neural support
for the hypothesis that the basic level strikes the best
balance between these two measures, whereas the sub-
ordinate and superordinate levels appear to each optimize
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similarity along one dimension over the other (Rosch,
1978). Moreover, our data underscore the importance of
considering the joint contribution of both aspects that give
rise to the concept of a category in visual cortex: Within-
category similarity (cohesion) may be an intuitive candi-
date for what makes a good category, but our work shows
that, in fact, distinctiveness is just as important in establish-
ing neural category boundaries and actually varies more
sharply between early visual areas and object-selective cor-
tex than cohesion. Most importantly, this organizational
principle emerges gradually as we move up the visual cor-
tical hierarchy and is not present in either low-level image
features or early visual cortex activations (Figures 2 and 5).
This suggests that objects in the world do not group natu-
rally by basic level category in terms of their appearance,
but instead, successive levels in the visual system may be
optimizing basic level categorizations.
Previous studies have reported that information de-

coding in early visual areas using a linear classifier is at

chance levels when retinal location, viewing angle, or size
is altered (Cichy, Chen, & Haynes, 2011; Eger, Ashburner,
et al., 2008; Eger, Kell, & Kleinschmidt, 2008). Perhaps
surprisingly, our results show a predilection for early
visual areas to group objects strongly at the subordinate
level, with this grouping diminishing gradually in favor of
the basic level only in later visual processing regions. This
effect can be well understood if we consider that objects
within the same subordinate level category share more
low-level features in common with each other than with
members of other (subordinate, basic, or superordinate)
categories, as evidenced by the low-level feature analyses
in Figures 2A, B and 5A, B (insets). Thus, given that sub-
ordinates share more overall low-level features in com-
mon, we expect to observe greater subordinate level
category cohesion, especially in early visual areas. High
cohesion here may also be partially explained by the
fact that our stimuli were all presented centrally, allowing
the low-level features to overlap despite the localized

Figure 6. Experiment 2: After controlling for animacy, real-world size, and naturalistic backgrounds, MVPA classification reveals that object categories
are most distinct at the basic level in LOC. (A) Proportion above chance of correct decoding responses for all levels of the taxonomy (chance is zero):
subordinate, basic, and superordinate. Top insets denote whether differences between adjacent bars are significant. Category information was
discernible significantly above chance at all taxonomic levels and in all ROIs. Decoding accuracy at the basic level was higher than both at the
subordinate and superordinate levels in LOC, but not in any of the other brain areas considered. (B) Confusion matrix example: LOC basic level
classification. Basic categories were ordered on the axes according to the pictograms: cars, ships, planes, beds, chairs, tables, drums, guitars, and
pianos. At the subordinate level, within each basic category, the three corresponding subordinates were listed alphabetically. At the superordinate
level, the “vehicle” category was listed first, the “furniture” category was listed second, and the “musical instrument” category was listed last.
(C) Confusion matrices for decoding analysis in A: top = subordinate level; middle = basic level; bottom = superordinate level. In all regions,
when classification errors did occur, the confusions were more likely to be within the same basic level than between basic levels (e.g., types of cars
were commonly confused with other types of cars but not with ships or beds), with the effect most salient in LOC. The basic level matrices show that
confusions become more common within the basic level as we move up the visual hierarchy. *p < .05, **p < .01, ***p < .001, ns = not significant.
Error bars: 95% confidence interval. SUBORD. = subordinate; SUPERORD. = superordinate.
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information processing and the small receptive fields in
these areas (Cichy et al., 2011; Eger, Ashburner, et al.,
2008; Eger, Kell, et al., 2008). Consequently, our results
do not imply that fine-grained category distinctions are
most strongly represented in early visual cortex; instead,
early visual cortex is simply the region where low-level
features best drive similarity of activity patterns. In fact,
decoding performance in early visual cortex indicates
that subordinate categories are less distinguishable than
the other two, presumably reflecting their low distinctive-
ness. Altogether, this suggests that the principle of max-
imizing within-category similarity and between-category
dissimilarity is necessary but not sufficient for a good
category representation: For example, in early visual
areas, we see strong category boundaries, but they are
likely because of low-level features.

Our results support the hypothesis that fine-grained
categories become more separable in higher visual areas
at the scale of neural response afforded to us by fMRI.
This trend is illustrated best in Figure 5B: Initially, activity
patterns elicited by subordinates are not distinguishable
(distinctiveness near zero in V1), but they become in-
creasingly anticorrelated (significantly positive distinctive-
ness in hV4 and LOC). This indicates that fine-grained
distinctions increase with complexity of visual processing
and that the high category boundary effect values ob-
served for subordinate categories in early visual areas
are mainly driven by high cohesion because of low-level
feature overlap. Finally, although low-level features of
our stimuli may, in part, contribute to the overall trend
we observe for subordinate categories, prior evidence
suggests that, indeed, visual features may be inextricably
linked to categorical representations (Fairhall, Anzellotti,
Pajtas, & Caramazza, 2011; Kellenbach, Wijers, & Mulder,
2000).

Anatomically, prior evidence suggests that large-scale
smooth selectivity gradients for semantic category group-
ings (Huth et al., 2012) and object attributes, such as ani-
macy (Connolly et al., 2012; Kriegeskorte et al., 2008;
Chao et al., 1999) and real-world size (Konkle & Oliva,
2012), underlie object category responses in the human
visual system. By leveraging similarity in cortical activity
patterns, our work complements this view by revealing
what may be an important principle of categorization in
the brain: Fine-grained representations trade off with
more general basic level representations after early visual
areas. By analyzing the similarity between the patterns of
category responses, we uncovered a tendency for object-
selective cortex (LOC) to amplify basic level category
boundaries compared to those at other taxonomic levels.
Although this tendency is strongest in LOC, other high-
level areas exhibit similar trends compared to early visual
cortex (albeit much less so than LOC). These include
both scene-selective (PPA, TOS, RSC) and face-selective
(FFA) areas. The fact that object-related activity behaves
similarly in these high-level visual areas, including those that
are not typically associated with object processing (PPA,

TOS, RSC), suggests that these areas may share common
computations—computations whose byproduct is to clarify
and separate categories.
The behavioral basic level advantage is mainly sup-

ported by evidence that most objects are categorized
faster at the basic level (Mack et al., 2009; Tanaka &
Taylor, 1991; Murphy & Wisniewski, 1989; Murphy &
Brownell, 1985; Jolicoeur et al., 1984; Smith, Balzano,
& Walker, 1978; Rosch et al., 1976; but not for domain-
level naming: Taylor, Devereux, Acres, Randall, & Tyler,
2012) and that basic level labels are used nearly exclu-
sively when people freely name an object (Rosch et al.,
1976). Our results offer a plausible neural explanation
for these aspects of the basic level perceptual advantage.
Under our proposed model, the basic level advantage
arises because of cortical computations that increase
the efficacy of basic level category boundaries between
early visual cortex and object-selective cortex. If LOC
primarily enhances category representations between
objects at the basic level, then areas that use its afferents
as input (temporal: McClelland & Rogers, 2003; or fron-
tal: Freedman & Miller, 2008; Miller, Freedman, & Wallis,
2002) would require less computation and thus less time
to extract or construct categorical information at the
basic level of specificity. Information about basic category
is easily linearly separable in LOC, whereas further
computations would be required to access subordinate
and superordinate representations. Consequently, basic
level information is mostly available from polling object-
selective areas at little additional computational cost and
thus voluntarily expressed faster, which is consistent with
prior behavioral findings (Rosch et al., 1976). Conse-
quently, our results are also consistent with the hypoth-
esis that an enhanced basic level advantage for neural
patterns of activity might arise at a postperceptual level
of representation, such as in high-level semantic areas
(e.g., posterior middle temporal gyrus, inferior temporal
gyrus) that likely represent and build amodal representa-
tions of object categories (Clarke & Tyler, 2014; Bruffaerts
et al., 2013; Fairhall & Caramazza, 2013). Indeed, we be-
lieve the search for such an area and representation consti-
tutes an interesting avenue for future study.
Although the basic level advantage is a well-accepted

phenomenon, there is some controversy surrounding
its robustness: Some behavioral studies report that either
the subordinate or superordinate level is accessed first,
rather than the basic level of specificity (Taylor et al.,
2012; Mace et al., 2009; Mack et al., 2009; Tanaka &
Taylor, 1991; Jolicoeur et al., 1984). In our behavioral
experiments, we found a strong basic level advantage
for virtually all categories we investigate in terms of
speeded categorizations, thus confirming that the entry
level for our taxonomy lies at the basic level. None-
theless, the real world contains several orders of magni-
tude more categories embedded in a much deeper
hierarchical tree than the three-tiered taxonomy we used.
Thus, the results reported here do not preclude the
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possibility that a carefully picked stimulus set (e.g., con-
taining less typical members of basic categories; Jolicoeur
et al., 1984), a different task (e.g., ultrafast categorization;
Mace et al., 2009), or a set of participants who possess
expertise in the categories being tested (Tanaka & Taylor,
1991) may change the level of the taxonomy at which
neural patterns may group object stimuli. Furthermore,
our results are highly generalizable across two sepa-
rate hierarchies where the superordinate level is defined
at different specificity distances from the basic level
(arguably natural and man-made are farther from the basic
level than vehicles, musical instruments, and furniture). We
are agnostic, however, whether other possible super-
ordinatesmay fare differently against our basic level catego-
ries. Nevertheless, we would then predict that such effect
would also be reflected in behavior. As such, all the above
manipulations provide interesting avenues of further
inquiry.
More broadly, our data suggest an alternative hypoth-

esis to the view that categorical distinctions emerge
mainly from processing in anterior temporal or frontal
areas of the brain (Freedman & Miller, 2008; McClelland
& Rogers, 2003; Miller et al., 2002), a view also mirrored by
models that strongly encapsulate vision from cognition
(Riesenhuber & Poggio, 2000; Phylyshyn, 1999; Fodor,
1993). Instead, our work shows that clear category separa-
tions emerge gradually as early as occipitotemporal regions
and in the absence of an explicit categorization task, sug-
gesting that categorization may be part of visual process-
ing. This view is consistent with recent behavioral results
that show that categories alter perception (Gilbert, Regier,
Kay, & Ivry, 2006), even when categorization is task irrele-
vant (Lupyan, Thompson-Schill, & Swingley, 2010).
The basic level advantage is a pervasive phenomenon

that captures something fundamental about human cog-
nition. As such, it has influenced many fields of knowledge,
ranging from psychology and neuroscience to molecular
biology, engineering, and the humanities. In fact, Rosch’s
original finding was cited over 4000 times across these dis-
ciplines. Our work provides a long overdue understanding
of why the basic level might be privileged: The human
brain appears to build basic level categories over successive
visual areas. Such an understanding is key to answering the
broader question about how the human brain extracts and
organizes information from our visual world.
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