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Abstract. We introduce the notion of W-measurable sensitivity, which extends and
strictly implies canonical measurable sensitivity, a measure-theoretic version of sensitive
dependence on initial conditions. This notion also implies pairwise sensitivity with respect
to a large class of metrics. We show that nonsingular ergodic and conservative dynamical
systems on standard spaces must be either W-measurably sensitive, or isomorphic mod 0
to a minimal uniformly rigid isometry. In the finite measure-preserving case they are
W-measurably sensitive or measurably isomorphic to an ergodic isometry on a compact
metric space.

1. Introduction. The notion of sensitive dependence on initial con-
ditions is an extensively studied isomorphism invariant of topological dy-
namical systems on compact metric spaces (e.g.., [GW93], [AAB96]). In
[JKL+08], the authors define two measure-theoretic versions of sensitive
dependence: measurable sensitivity and strong measurable sensitivity, and
show that, unlike their traditional topologically-dependent counterpart,
both of these properties are invariant under measurable-theoretic isomor-
phism. James et al. introduce these notions for nonsingular transformations
and show that measurable sensitivity is implied by double ergodicity (a prop-
erty equivalent to weak mixing in the finite measure-preserving case) and
that strong measurable sensitivity is implied by light mixing in the finite
measure-preserving case.

In this paper, we introduce W-measurable sensitivity, a notion that is
a priori stronger than measurable sensitivity and implies it straightforwardly.
We use this new property, together with properties of µ-compatible metrics
(see below), to formulate a classification of all nonsingular conservative
and ergodic transformations on standard Borel spaces as being either W-
measurably sensitive or isomorphic to a minimal uniformly rigid isometry;
in the case of finite invariant measure we obtain more, namely the system is
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W-measurably sensitive or isomorphic to a minimal uniformly rigid invertible
isometry on a compact metric space. In the course of this proof, we also show
that W-measurable sensitivity is in fact equivalent to measurable sensitivity
for conservative and ergodic transformations.

In addition, we show (see Appendix A) that W-measurable sensitiv-
ity is closely related to pairwise sensitivity, a notion introduced in [CJ05]
for finite measure-preserving transformations. In their paper, Cadre and
Jacob show that weakly mixing finite measure-preserving transformations
always exhibit pairwise sensitivity, as also does any ergodic finite measure-
preserving transformation satisfying a certain entropy condition. Our results
imply that any finite measure-preserving ergodic transformation that is not
isomorphic mod 0 to a Kronecker transformation will exhibit pairwise sensi-
tivity with respect to any µ-compatible metric (in addition to W-measurable
sensitivity).

The plan of the paper is as follows. Section 2 recalls basic definitions from
[JKL+08] and introduces µ-compatible metrics [JKL+08] and some of their
properties. In Section 3 we define W-measurable sensitivity. Section 4 starts
by constructing 1-Lipschitz metrics from any metric on a dynamical system,
and then shows that W-measurable sensitivity can be equivalently expressed
in additional ways using properties of µ-compatible metrics. In Section 5, we
provide a sufficient condition under which the newly constructed 1-Lipschitz
metric is in fact µ-compatible, and discuss consequences of this fact, largely
from [AG01]. In Section 6 we discuss the invariance of W-measurable sensi-
tivity under measurable isomorphism, as well as the technical assumptions
necessary for it to hold. We also illustrate the main connection between
1-Lipschitz metrics and W-measurable sensitivity, namely that a conserva-
tive and ergodic nonsingular dynamical system is W-measurably sensitive if
and only if all dynamical systems (X ′, µ′, T ′) isomorphic mod 0 to it admit
no µ′-compatible 1-Lipschitz metrics. Finally, in Section 7 we prove our main
result, which classifies all conservative and ergodic, nonsingular transforma-
tions on standard Borel spaces as being either W-measurably sensitive, or
isomorphic to a minimal uniformly rigid invertible isometry. A corollary of
this fact is that for conservative and ergodic transformations, W-measurable
sensitivity is equivalent to measurable sensitivity as defined in [JKL+08]. We
end the section by obtaining a stronger result in the case of ergodic finite
measure-preserving transformations.

In the appendix we elaborate on the relationship between our results and
the notion of pairwise sensitivity as introduced in [CJ05], and mention the
recent work in [HLY11].

2. Preliminary definitions. A nonsingular dynamical system is a quad-
ruple (X,S(X), µ, T ), where (X,S(X), µ) is a standard nonatomic Lebesgue
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space (i.e., (X,S(X)) is a standardIn Borel space, see e.g. [Sri98], and µ
is a σ-finite, nonatomic measure on S(X)). It follows that X must be of
cardinality c as the measure is nonatomic. Furthermore, the transformation
T is measurable and a nonsingular endomorphism (i.e., for all A ∈ S(X),
T−1(A) ∈ S(X) and µ(A) = 0 if and only if µ(T−1(A)) = 0, see e.g. [Sil08]).
In some cases we assume that T is measure-preserving or that the measure
space is finite. Recall that T is conservative and ergodic if and only if for all
measurable sets A, if T−1(A) ⊂ A, then µ(A) = 0 or µ(Ac) = 0.

We consider metrics or pseudo-metrics on X. We assume throughout
this article that all pseudo-metrics d : X ×X → R are (Borel) measurable
and bounded by 1 (one can replace d by d/(1 + d)). It follows that, for each
ε > 0, the set {(x, y) ∈ X × X : d(x, y) < ε} is measurable. Therefore, by
e.g. [Sri98, Exercise 3.1.20], the balls

Bd(x, ε) = {y ∈ X : d(x, y) < ε}

are measurable. For a pseudo-metric d define

Dd(x) = max{ε ≥ 0 : µ(Bd(x, ε)) = 0},
Dis(d) = {x ∈ X : Dd(x) > 0}.

A (measurable) metric d on (X,S(X), µ) is said to be µ-compatible if
µ assigns positive (nonzero) measure to all nonempty, open d-balls in X,
equivalently if Dis(d) = ∅, or ifDd(x) = 0 for all x ∈ X. If d is a µ-compatible
metric on (X,S(X), µ), then X is separable under d (see [JKL+08, 1.1]
and Proposition 2.1 below). Therefore open sets are measurable as they are
countable unions of balls. All d-closed sets are also measurable, etc. We say
that d is µ-separable if µ(Dis(d)) = 0, or equivalently Dd(x) = 0 a.e. It
follows that if d is µ-separable, then the restriction of d to X \ Dis(d) is
µ-compatible.

Proposition 2.1. Let (X,S(X), µ, T ) be a nonsingular dynamical sys-
tem and let d be a pseudo-metric on X.

(1) The function Dd(x) is continuous with respect to d and measurable.
(2) The pseudo-metric d is separable when restricted to X \ Dis(d). In

particular, if d is µ-compatible, then it is separable on X.
(3) Dis(d) is open with respect to d and measurable.
(4) A pseudo-metric d is µ-separable if and only if there exists a measure

zero subset Z of X such that d restricted to X \ Z is separable.

Proof. (1) Suppose that β < Dd(x) < α. Set

δ =
1
2

min{Dd(x)− β, α−Dd(x)}.
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Then for each y ∈ Bd(x, δ) we have

Bd(y, β) ⊂ Bd(x, β + δ), Bd(x, α− δ) ⊂ Bd(y, α).

Since β + δ < Dd(x), we have µ(Bd(x, β + δ)) = 0, so µ(Bd(y, β)) = 0
and Dd(y) ≥ β. Similarly we obtain Dd(y) ≤ α. This implies that Dd is
continuous with respect to d, and therefore measurable.

(2) For 0 < ε < 1, let Aε ⊂ X \ Dis(d) be such that if x, y ∈ Aε then
d(x, y) ≥ ε, and let it be maximal with respect to this property. It follows
that

{Bd(x, ε/2) : x ∈ Aε}

is a collection of disjoint sets of positive measure, and since µ is σ-finite,
this collection is countable. This shows that each Aε is countable. Then the
union

⋃
n∈NA1/n is a countable set that is dense in X \Dd for the metric d.

(3) Since Dd is continuous by (1), Dis(d) is open with respect to d.
By part (2), every open set that is contained in X \ Dis(d) is a countable
union of balls, hence it is measurable. Similarly, closed sets contained in
X \Dis(d) are measurable. In particular, X \Dis(d), and so Dis(d), is mea-
surable.

(4) Suppose that µ(Dis(d)) > 0 and let Z ⊂ X be such that µ(Z) = 0.
We show that d is not separable on the subset Dis(d) \Z of X \Z. We first
note that the collection

{Bd(x,D(x)) : x ∈ Dis(d) \ Z}

is an open cover of Dis(d)\Z, and since Dis(d)\Z has positive measure and
each of the balls has measure zero (by definition of Dis(d)), the collection
cannot have a countable subcover. Conversely, if µ(Dis(d)) = 0 we can let
Z = Dis(d) and use part (2).

Proposition 2.2. Let (X,S(X), µ, T ) be a nonsingular dynamical sys-
tem and let d be a pseudo-metric on X. Let δ > 0. If Dd(x) ≥ δ for almost
all x ∈ X, then Dd(x) ≥ δ/2 for all x ∈ X.

Proof. Let

Z = {z ∈ X : Dd(z) ≥ δ} = {z ∈ X : µ(Bd(z, δ)) = 0}.

We know that µ(Zc) = 0. Suppose Dd(x) < δ/2 for some x ∈ X. Then
µ(Bd(x, δ/2)) > 0. So there exists z ∈ Bd(x, δ/2) ∩ Z. By the triangle
inequality, Bd(x, δ/2) ⊂ Bd(z, δ). This means that µ(Bd(z, δ)) > 0, a con-
tradiction.

3. W-measurable sensitivity. We start by recalling the definition of
measurable sensitivity.
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Definition 3.1 ([JKL+08]). A nonsingular dynamical system (X,S(X),
µ, T ) is said to be measurably sensitive if for every isomorphic mod 0 dy-
namical system (X1,S(X1), µ1, T1) and any µ1-compatible metric d on X1,
there exists δ > 0 such that for x ∈ X1 and all ε > 0 there exists n ∈ N such
that

µ1{y ∈ Bε(x) : d(Tn1 (x), Tn1 (y)) > δ} > 0.

We now introduce the definition that we shall be using extensively.

Definition 3.2. For a µ-compatible metric d, a nonsingular dynamical
system (X,µ, T ) is W-measurably sensitive with respect to d if there is a
δ > 0 such that for every x ∈ X,

lim sup
n→∞

d(Tnx, Tny) > δ

for almost every y ∈ X. The dynamical system is said to be W-measurably
sensitive if the above condition holds true for all µ-compatible metrics d.

Remark. (1) As in [JKL+08], it can be shown that a doubly ergodic
nonsingular transformation is W-measurably sensitive. (Double ergodicity
is a condition for nonsingular transformations that is equivalent to weak
mixing in the finite measure-preserving case [Fur81].) There exist both in-
finite (and finite) measure-preserving and nonsingular type III (i.e., not
admitting an equivalent σ-finite invariant measure) invertible transforma-
tions that are doubly ergodic (see e.g. [DS09]), and therefore W-measurably
sensitive.

(2) If a measure space (X,µ) has atoms, no transformation on it can
exhibit W-measurable sensitivity with respect to any metric. Indeed, for any
x ∈ X, and any δ, the set of points y such that lim supn→∞ d(Tnx, Tny) > δ
cannot include x. So this set cannot have full measure (i.e., its complement
cannot have measure zero) if µ({x}) > 0.

The same is not true about measurable sensitivity. For this reason,
throughout this paper we assume that our measure space is nonatomic.

(3) A very important example of an ergodic finite measure-preserving
dynamical system which is not W-measurably sensitive is a Kronecker trans-
formation, i.e. an ergodic isometry on an interval of finite length (with
the Lebesgue measure and the usual metric). This transformation is not
W-measurably sensitive with respect to the usual metric because it is an
isometry. There are also examples of conservative and ergodic type III non-
singular invertible transformations that are not W-measurable sensitive. Let
X =

∏∞
i=0{0, 1}, the 2-adic integers, let T be addition of 1, Tx = x+ 1, and

d be the 2-adic metric. Then it is well-known that T is a minimal isometry
for d. Let 0 < p < 1 and µp =

∏∞
i=0{p, 1 − p}, a probability measure on

the Borel σ-field B. Then µp is a nonsingular measure for (X,B, T ) that is
conservative and ergodic of type III (when p 6= 1/2), see e.g. [DS09]. It is
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clear that d is µp-compatible, so (X,B, T ) is a conservative ergodic invertible
nonsingular transformation that is not finite measure-preserving and is not
W-measurably sensitive.

We note that the property of W-measurable sensitivity is preserved under
measurable isomorphisms (Proposition 6.2).

W-measurable sensitivity clearly implies measurable sensitivity (see the
first part of the proof of Proposition 7.2). In fact, we show that the two
notions are equivalent for conservative and ergodic dynamical systems. We
first show in Proposition 4.2 that for a transformation to be W-measurably
sensitive, it is sufficient for each y ∈ Y to have one value of n that satisfies
d(Tnx, Tny) > δ. The remainder of the equivalence follows from the results
in the following sections, culminating with Proposition 7.2.

4. Constructing 1-Lipschitz metrics. We shall use the term 1-Lip-
schitz metrics (with respect to T ) to denote metrics that satisfy the inequality
d(Tx, Ty) ≤ d(x, y) for all x and y.

First, we provide a way to construct a 1-Lipschitz metric from any other
metric.

Definition 4.1. Let (X,µ, T ) be a nonsingular dynamical system, and
d be a metric on X. Define, for x, y ∈ X,

dT (x, y) = sup
n≥0

d(Tnx, Tny).

Lemma 4.1. dT is a metric on X (satisfying our standing assumptions:
measurable and bounded). Moreover, it is a 1-Lipschitz metric.

Proof. The first statement is left to the reader. To see that the metric
is 1-Lipschitz we compute

dT (Tx, Ty) = sup
n≥0

d(Tn(Tx), Tn(Ty)) = sup
n≥1

d(Tnx, Tny)

≤ sup
n≥0

d(Tnx, Tny) = dT (x, y).

Remark. In general, even if the metric d is µ-compatible, the metric
dT may not be µ-compatible. Consequently, there is no guarantee that the
measure space is separable under the topology determined by dT .

For example, let I be the unit interval, λ be the Lebesgue measure, and
d be the usual metric. Let T : I → I be the doubling map Tx = 2x (mod 1).
Note that d is a λ-compatible metric.

The metric dT is not, however, λ-compatible. Indeed, for any x 6∈ Q, and
any ε > 0, there will be an n such that d(0, Tnx) > 1−ε. So, since T (0) = 0,
we have

sup
n≥0

d(Tn(0), Tny) = sup
n≥0

d(0, Tny) = 1.
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In other words, for any 0 < δ < 1, the δ-ball around 0 in the dT metric may
contain only rational points. So, λ(BTδ(0)) = 0, and dT is not λ-compatible.

In this example, the transformation T turns out to be W-measurably
sensitive. In fact, being mixing, it is strongly measurably sensitive (see
[JKL+08]). On the other hand, we will see that whenever the 1-Lipschitz
metric dT is µ-compatible, the corresponding transformation T is not W-
measurably sensitive.

We now formulate several equivalent definitions of W-measurably sensi-
tive transformations. We start by showing that while the original definition
requires the existence of infinitely many times n satisfying the condition, it
is sufficient to require the existence of one such n.

Proposition 4.2. Let (X,µ, T ) be a nonsingular dynamical system, and
d be a µ-compatible metric. The following are equivalent:

(1) The system is W-measurably sensitive with respect to d.
(2) There is a δ > 0 such that for each x ∈ X, for almost every y ∈ X,

dT (x, y) > δ.

(3) There is a δ > 0 such that for each x ∈ X,

µ(BdT (x, δ)) = 0.

(4) There is a δ > 0 such that for each x ∈ X,

DdT (x) ≥ δ.
(5) There is a δ > 0 such that for each x ∈ X,

DdT (x) > δ.

Proof. (2)⇒(1). Suppose that there is a δ > 0 such that for each x ∈ X,
for almost every y ∈ X, there exists n such that d(Tnx, Tny) > δ. For every
natural number N and x ∈ X define

Y (N, x) = {y ∈ X : ∃n > N, d(Tnx, Tny) > δ}.
We now prove that for all N and x, the set Y (N, x) has full measure. Con-
sider the point TNx. Using our assumption, for almost every y ∈ X, there
exists n such that d(Tn(TNx), Tny) > δ. In other words, the set

Z(N, x) = {y ∈ X : ∃n > 0, d(TN+nx, Tny) > δ}
has full measure. Notice that Y (N, x) = T−N (Z(N, x)). Since T is a non-
singular transformation, Y (N, x) must also have full measure.

Finally, let Yx =
⋂∞
N=0 Y (N, x). Clearly, Yx has full measure. Further-

more, for every y ∈ Yx, there are infinitely many values of n such that
d(Tnx, Tny) > δ. So

lim sup
n→∞

d(Tnx, Tny) ≥ δ
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for almost all y ∈ X. Therefore the system (X,µ, T ) is W-measurably sen-
sitive with respect to d.

(1)⇒(2). This is clear from the definitions.
(2)⇔(3). If (2) is satisfied at x for some δ, then BdT (x, δ) is contained

in the complement of a set of full measure. So µ(BdT (x, δ)) = 0.
Conversely, if (3) is satisfied at x for some δ, then BdT (x, δ) has measure

zero. So in particular, the set {y ∈ X : ∀n ≥ 0, d(Tnx, Tny) ≤ δ/2} has
measure zero. Therefore, for almost every y ∈ X, there is some n for which
d(Tnx, Tny) > δ/2, and condition (2) is satisfied.

The equivalence of (3) and (4) is clear from the definitions. The equiva-
lence of (4) and (5) is clear since δ does not have to be the same.

Remark. From Proposition 2.2 it follows that in the equivalent charac-
terizations of W-measurable sensitivity in Proposition 4.2, one can replace
“for each x ∈ X” in parts (2)–(5) with “for a.e. x ∈ X.”

5. Conditions for 1-Lipschitz metric dT to be µ-compatible and
consequences. Now, we provide a sufficient condition for the 1-Lipschitz
metric dT to be µ-compatible given that the transformation T is ergodic.

The proof of the following lemma is standard (see for example [ST91,
Corollary 2.7]).

Lemma 5.1. Let (X,µ, T ) be a conservative and ergodic nonsingular dy-
namical system. Let f : X → R be a measurable function. If f ≥ f ◦ T a.e.,
then f = f ◦ T a.e.

Lemma 5.2. Let (X,µ, T ) be a nonsingular dynamical system, and d be
a metric on X. If d is 1-Lipschitz then

Dd ≥ Dd ◦ T on X.

Proof. Let T ∗d denote the metric T ∗d(x, y) = d(Tx, Ty). First we ob-
serve

T−1Bd(Tx, ε) = {y ∈ X : d(Tx, Ty) < ε} = BT ∗d(x, ε).

Since T is nonsingular, µ(BT ∗d(x, ε)) = 0 if and only if µ(Bd(Tx, ε)) = 0. It
follows that

DT ∗d(x) = Dd(Tx) for all x ∈ X.
Since T is 1-Lipschitz, d(x, y) ≥ d(Tx, Ty), which implies

Dd(x) ≥ DT ∗d(x) for all x,

completing the proof.

Now, we are ready to state the sufficient condition for the 1-Lipschitz
metric dT to be µ-compatible, which is our main tool in proving the main
results in Section 7.
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Lemma 5.3. Let (X,µ, T ) be a conservative and ergodic nonsingular dy-
namical system. Let d be a µ-compatible metric on X. Suppose further that
T is not W-measurably sensitive with respect to d. Then there exists a pos-
itively invariant measurable set X1 of full measure (i.e., X1 ⊂ T−1(X1)
and µ(X \ X1) = 0) such that dT is a µ-compatible metric for the system
(X1, µ, T ), where µ and T are the restrictions to X1 of the original measure
and transformation.

Proof. First we observe that

T−1(Dis(dT )) ⊂ Dis(dT ).(5.1)

In fact, if Tx ∈ Dis(dT ), then DdT (Tx) > 0. Since dT is 1-Lipschitz, by
Lemma 5.2, DdT (x) > 0, so x ∈ Dis(dT ). Therefore T can be restricted to a
transformation on the positively invariant set X1 = X \Dis(dT ).

Since T is conservative and ergodic it follows from (5.1) that µ(Dis(dT ))
= 0 or µ(Dis(dT )c) = 0. If it were the case that µ(Dis(dT )c) = 0 then
there would exist r > 0 such that DdT (x) > r on a set of positive measure,
hence by Lemmas 5.2 and 5.1, as T is conservative and ergodic, the condition
holds for a.e. x, but this contradicts the hypothesis by the Remark following
Proposition 4.2. Therefore µ(Dis(dT )) = 0 and X1 is a set of full measure.
(It also follows that DdT (x) = 0 for a.e. x ∈ X.)

Clearly, dT is a metric on X1. To see that it is µ-compatible we calculate,
for x ∈ X1 and ε > 0,

µ(BdT (x, ε) ∩X1) = µ(BdT (x, ε)) > 0.

Remark. In relation to Lemma 5.3, we note that it is possible that a
system (X,µ, T ) is not W-measurably sensitive but does not itself admit
any µ-compatible metric d that is 1-Lipschitz. For example, consider the
dynamical system (I, λ, T ) where I is the unit interval and λ is the Lebesgue
measure. Let α be a fixed irrational number between 0 and 1. For any x ∈ I,
we define

T (x) =
{
x if x = n · α+m for some n,m ∈ Z,
x+ α (mod 1) otherwise.

This system is ergodic and not measurably sensitive as it is measurably iso-
morphic to a rotation. However, there is no λ-compatible 1-Lipschitz metric
on I.

Indeed, suppose that there is a λ-compatible metric d such that d(Tx, Ty)
≤ d(x, y) for all x, y ∈ I. Let B be a ball of radius α/2 around 0. Since d is
λ-compatible, B must have positive measure. Furthermore, since T (0) = 0,
for any point b ∈ B, we must have d(T (b), 0) ≤ d(b, 0) < α/2, and therefore,
T (b) ∈ B. So T maps a set of positive measure into itself. This is impossible
for a transformation isomorphic mod 0 to an irrational rotation.



62 I. GRIGORIEV ET AL.

In the rest of this section, we describe some useful consequences of a
1-Lipschitz metric being µ-compatible.

Let (X, d) be a metric space and T : X → X a transformation. Let ω(x)
denote the set of accumulation points of the positive orbit {Tnx : n ∈ N0}.
A point x ∈ X is transitive for T if ω(x) = X. When (X, d) has no isolated
points this is equivalent to the (positive) orbit of x being dense in X. As we
will only consider µ-compatible metrics where µ is nonatomic, all our metric
spaces will have no isolated points. T is transitive if it has a transitive
point. The transformation T is minimal if ω(x) = X for all x ∈ X. It is
uniformly rigid if there exists a sequence ni such that d(Tnix, x) converges
to 0 uniformly on X.

The following lemma is essentially known.

Lemma 5.4. Let (X,µ, T ) be a conservative and ergodic nonsingular dy-
namical system. If d is a µ-compatible metric on X, then µ-a.e. point of X
is transitive.

Proof. Since by assumption µ is nonatomic, d has no isolated points. By
Proposition 2.1, (X, d) is separable, so there exist {xi : i ∈ N} dense in X.
For each r ∈ Q, r > 0, and each i,N ∈ N, set

A∗i,N,r =
⋃
n≥N

T−n(Bd(xi, r)).

Since T is conservative and ergodic, each A∗i,N,r is of full measure. Finally
let

B =
⋂
i,N,r

A∗i,N,r.

Clearly B is of full measure and each point in B has a dense orbit.

The following proposition is essentially from [AG01].

Proposition 5.5. Let (X, d) be a metric space and let T : X → X be
a 1-Lipschitz transformation. If T is transitive, then it is a uniformly rigid,
minimal isometry.

Proof. Let x be a point such that ω(x) = X. (This in particular implies
that the metric d is separable.) Let ε > 0. There exists an integer k > 0 such
that d(x, T kx) < ε. Since T is 1-Lipschitz, for all n ∈ N, d(Tnx, Tn(T kx))
< ε. Let y ∈ X. Since T k is continuous, for n such that d(y, Tnx) is suffi-
ciently small, d(T ky, T k(Tnx)) < ε. Then

d(y, T ky) ≤ d(y, Tnx) + d(Tnx, Tn(T kx)) + d(T k(Tnx), T ky) < 3ε.

Therefore T is uniformly rigid. Now, in this case there exists a sequence
ni →∞ such that d(Tnix, x)→ 0 for all x ∈ X. Therefore, for all x, y ∈ X,

0 ≤ d(Tnix, Tniy)− d(x, y) ≤ d(Tnix, x) + d(y, Tniy)→ 0.
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If T were not an isometry there would exist x, y ∈ X such that d(Tx, Ty) <
d(x, y), but then d(Tnix, Tniy) could not converge to d(x, y).

Finally we show that T is minimal. Again, let ω(x) = X and y ∈ X.
Let ε > 0, z ∈ X. There exists i ∈ N such that d(T ix, y) < ε. Then we can
choose j ∈ N so that d(T i+jx, z) < ε. So

d(T jy, z) ≤ d(T jy, T j+ix) + d(T j+ix, z) ≤ d(y, T ix) + d(T j+ix, z) < 2ε.

Therefore ω(y) = X.

Now, let Cd(X,X) be the space of continuous maps from X to itself, with
the metric d(S1, S2) = supx∈X{d(S1x, S2x)}. We also define a subset

JT = {S ∈ Cd(X,X) : S ◦ T = T ◦ S}.
This is clearly a subsemigroup of Cd(X,X) under composition.

The following proposition is essentially from [AG01]. We are indebted to
Ethan Akin for the proof.

Proposition 5.6. Let (X, d) be a metric space and let T be a transitive
and 1-Lipschitz transformation. Then, for each x ∈ X, the evaluation map

evx : JT → X, S 7→ Sx,

is an isometry. Moreover, the space JT is the closure of the sequence {id, T,
T 2, . . .} in Cd(X,X). If in addition the metric space (X, d) is complete, then
the evaluation map evx is an invertible isometry. Moreover, the semigroup
JT is then a group, and therefore T ∈ JT has to be invertible.

Proof. Fix a point x ∈ X and let S, S′ ∈ JT . We wish to show that the
map evx is an isometry. Since S and S′ both commute with T , and T is
1-Lipschitz, for all m,

d(S(Tmx), S′(Tmx)) ≤ d(Sx, S′x).

Since S and S′ are both continuous and the set of all {Tmx} is dense, for
all y ∈ X we have d(Sy, S′y) ≤ d(Sx, S′x) and therefore

d(S, S′)Cd(X,X) = sup
y∈X

d(Sy, S′y)X = d(Sx, S′x)X = d(evx S, evx S′)X

and so evx is an isometry.
Now, the subset JT is clearly closed in Cd(X,X). Fix some S ∈ JT and

x ∈ X. Since T is minimal, x is a transitive point, and so there is a sequence
{nj} such that limj→∞ T

njx = Sx. In other words, limj→∞ evx Tnj = evx S
inX. Since evx is an isometry, this implies that limj→∞ T

nj = S in Cd(X,X),
completing the proof of the first part of the proposition.

If we assume that the space (X, d) is complete, so is the space Cd(X,X).
For x ∈ X, we show that evx is surjective.

Pick a y ∈ X. There is a sequence of nj ’s such that Tnjx → y. In
particular, the sequence evx Tnj is Cauchy. Since evx is an isometry, the
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sequence Tnj is Cauchy in Cd(X,X). By completeness, it has a limit S ∈ Jd
(since Jd is closed); clearly evx S = y and evx is surjective.

Now, let S ∈ Jd be arbitrary. Since the map evSx is surjective, we can
pick an S′ so that

S′(Sx) = evSx S′ = x.

Since evx(SS′) = (S′S)x = x and evx is injective, S ◦ S′ is the identity, and
S′ = S−1. So, all maps in Jd are invertible.

6. W-measurable sensitivity on isomorphic mod 0 dynamical
systems. We prove that W-measurable sensitivity is invariant under mea-
surable isomorphism. Here we use the assumption that we are working on
standard Borel spaces.

Lemma 6.1. Let (X,S) be a standard Borel space, with µ a nonatomic
measure on S. Let U ⊂ X be a Borel subset of full measure and let d be a
µ-compatible metric defined on U . Then the metric d can be extended to a
µ-compatible metric d1 on all of X in such a way that d and d1 agree on a
set of full measure.

Proof. Since the measure is nonatomic and U is Borel, it must have the
same cardinality as X. Using e.g. [Sri98, 3.4.23] one can show that there
exists a Borel set Z ⊂ U of measure zero and cardinality c. Therefore there
exists a Borel isomorphism φ : (X \ U) t Z → Z. Then we can define
φ′ : X → U by

φ′(x) =
{
φ(x) if x ∈ (X \ U) ∪ Z,
x if x ∈ U \ Z.

(φ′ is the identity on the full-measure Borel subset U \ Z.) For x, y ∈ X
define d1(x, y) = d(φ′(x), φ′(y)). Clearly, since d is a measurable metric, so
is d1. Since every d1-ball corresponds to a d-ball under the map φ, which is
a Borel isomorphism, d1 is also a µ-compatible metric and agrees with d on
(U \ Z)× (U \ Z).

Using Lemma 6.1, we can prove the invariance of W-measurable sensi-
tivity.

Proposition 6.2. Suppose (X,µ, T ) is a W-measurably sensitive non-
singular dynamical system. Let (X ′, µ′, T ′) be a nonsingular dynamical sys-
tem isomorphic mod 0 to (X,µ, T ). Then (X ′, µ′, T ′) is also W-measurably
sensitive.

Proof. Suppose (X ′, µ′, T ′) is not W-measurably sensitive. Then there is
a µ′-compatible metric d′ on X ′ such that (X ′, µ′, T ′) is not W-measurably
sensitive with respect to d′.
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By the definition of measurable isomorphism, there must be Borel subsets
U ⊂ X and U ′ ⊂ X ′ and a measure-preserving bijection φ : U → U ′ such
that µ(X \ U) = µ′(X ′ \ U ′) = 0, and φ ◦ T = T ′ ◦ φ.

We define a metric d on U by d(x, y) = d′(φ(x), φ(y)) for x, y ∈ U .
It is clearly µ-compatible on U . We apply Lemma 6.1 to extend d to a
µ-compatible metric d1 defined on all of X that agrees with d almost every-
where.

Now, we show that (X,µ, T ) is not W-measurably sensitive with respect
to d1. Let δ > 0. Since (X ′, µ′, T ′) is not W-measurably sensitive with respect
to d′, by part (3) of Proposition 4.2 there must be an x′ ∈ X ′ such that the
set Y ′ = {y ∈ X ′ : ∀n ≥ 0, d′(T ′nx, T ′ny) < δ/2} has positive measure.
Let Y be the corresponding set in X, that is, Y = φ−1(Y ′ ∩ U ′). Note that
µ(Y ) = µ′(Y ′) > 0.

Pick any x ∈ Y . By the triangle inequality, for all y ∈ Y and all inte-
gers n, we have

d1(Tnx, Tny) = d′(T ′n(φ(x)), T ′n(φ(y))
≤ d′(x′, T ′n(φ(x)) + d′(x′, T ′n(φ(y)) ≤ δ.

Since Y has positive measure, (X,µ, T ) cannot be W-measurably sensitive.

Proposition 6.3. Let (X,µ, T ) be a conservative and ergodic nonsin-
gular dynamical system. T is W-measurably sensitive if and only if all mea-
surably isomorphic dynamical systems (X ′, µ′, T ′) admit no µ′-compatible
metrics that are 1-Lipschitz.

Proof. First we note that if a dynamical system (X ′, µ′, T ′) admits a µ′-
compatible 1-Lipschitz metric d′, then this system could not be W-measur-
ably sensitive, since for all integers n, d′(Tnx, Tny) ≤ d′(x, y). Now, if a
dynamical system (X,µ, T ) is W-measurably sensitive, then every measur-
ably isomorphic system (X ′, µ′, T ′) will also be W-measurably sensitive, and
therefore will not admit a µ′-compatible 1-Lipschitz metric d′.

For the converse, suppose (X,µ, T ) is not W-measurably sensitive. By
Lemma 5.3 there is a set X1 ⊂ X of full measure such that if T1 is T
restricted to X1, and µ1 is µ restricted to X1, then dT is a 1-Lipschitz
µ1-compatible metric on (X1, µ1, T1).

Remark. If d is a µ-compatible metric on (X,µ), then X must be
a separable metric space under d (by [JKL+08] and Proposition 2.1(3)),
so X has at most the cardinality of the reals. A nonatomic (probability)
Lebesgue space is defined as a measure space (X,S, µ) that is isomorphic
mod 0 to the unit interval I with Lebesgue measure λ, i.e., there exist
sets of full measure U ⊂ X and U ′ ⊂ I such that there is a (measure-
preserving) isomorphism from U to U ′. However, there is no restriction
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on X \ U other than being of µ-measure 0, and it could have cardinal-
ity greater than the reals. In this case X would admit no µ-compatible
metric, and for instance, transformations on this space would be vacuously
W-measurably sensitive. We introduce the following definition for Lebesgue
spaces.

Definition 6.1. Let (X,µ) be a Lebesgue space (or more generally a σ-
finite measure space) and let T be a nonsingular transformation on (X,µ).
A dynamical system (X,S, µ, T ) is VW-measurably sensitive if for every
positively invariant measurable set of full measure set U ⊂ X, the system
(U,S(U), µ, T ) is W-measurably sensitive.

Remark. (1) By Lemma 6.1, on standard Borel spaces, the notions
of W-measurable sensitivity and VW-measurable sensitivity are equivalent.
Also, it follows from the definition that VW-measurable sensitivity is invari-
ant under isomorphism.

(2) Here we note that nonsingular dynamical systems (on standard Borel
spaces) (X,µ, T ) do admit µ-compatible measures. In fact we know that if
(X,S) is a standard Borel space and µ is a continuous measure on S, which
we may assume a probability measure, then there exists a Borel isomorphism
φ from (X,S, µ) to the unit interval with Lebesgue measure (I,B, λ) (see
e.g. [Sri98, 3.4.23]). Clearly the Euclidean distance d on I is a λ-compatible
measure on (I,L, λ). Then d′ defined by d′(x, y) = d(φ(x), φ(y)) is a µ-
compatible metric on X.

7. Characterization of W-measurable sensitivity. We shall now
prove our main result, that such a transformation is either W-measurably
sensitive or measurably isomorphic to a minimal uniformly rigid isometry.
This can be seen as a measurable version of the dichotomy theorem of Aus-
lander and Yorke [AY80] for topological dynamical systems (continuous sur-
jective maps on compact metric spaces), which states that a transitive map
on a topological system is either sensitive or almost equicontinuous. Re-
lated topological dynamical results are in [GW93], [AG01] and the references
therein.

Theorem 1. Let (X,µ, T ) be a conservative and ergodic nonsingular
dynamical system. Then T is either W-measurably sensitive, or isomor-
phic mod 0 to an invertible minimal uniformly rigid isometry on a Polish
space.

Proof. Suppose T is not W-measurably sensitive. Then, by Lemma 5.3,
there exists a positively invariant set X1 of full measure such that dT is
µ-compatible for the system (X1, µ1, T1), where µ1 is the restriction of µ
to X1, and T1 the restriction of T to X1. By Lemma 5.4, T1 is transitive with
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respect to dT . Since T1 is 1-Lipschitz with respect to dT , by Proposition 5.5,
T1 is a uniformly rigid minimal isometry on (X1, dT ).

Now, let (X2, d2) be the topological completion of the metric space
(X1, dT ). Since dT is separable, d2 is also separable so (X2, d2) is Polish.
We extend the measure µ1 to X2 by defining a set S ⊂ X2 to be mea-
surable if S ∩ X1 is measurable, with µ2(S) = µ1(S ∩ X). Since T1 is an
isometry, it is continuous on (X1, dT ), so there is a unique way to extend
it to a continuous transformation T2 on (X2, d2). It is easy to verify that
T2 must also be an isometry with respect to d2. It is invertible by Proposi-
tion 5.6.

Clearly, the dynamical system (X2, µ2, T2) is measurably isomorphic to
(X,µ, T ).

Invertible examples of W-measurably sensitive transformations are men-
tioned in Section 3, but we have the following direct consequence of the
theorem.

Corollary 7.1. If a conservative and ergodic nonsingular transforma-
tion is not invertible a.e. then it cannot be isomorphic mod 0 to an invertible
isometry, so it must be W-measurably sensitive.

As a first application of Theorem 1, we show the following proposi-
tion.

Proposition 7.2. If a dynamical system is W-measurably sensitive,
then it is measurably sensitive. If a dynamical system is conservative er-
godic and measurably sensitive, then it is W-measurably sensitive.

Proof. First, suppose (X,µ, T ) is a W-measurably sensitive nonsingular
dynamical system. By Proposition 6.2, every isomorphic mod 0 dynam-
ical system (X1, µ1, T1) is also W-measurably sensitive. So, for any µ1-
compatible metric d1 on X1, there is a δ > 0 such that for all x ∈ X1,
we have lim supn→∞ d(Tnx, Tny) > δ for almost all y ∈ X1.

In particular,

µ1{y ∈ Bd1(x, ε) : ∃n > 0, d1(Tn1 (x), Tn1 (y)) > δ} = µ1(Bd1(x, ε)) > 0.

This implies that there is an n > 0 for which the set

{y ∈ Bd1(x, ε) : d1(Tn1 (x), Tn1 (y)) > δ}
has positive measure. Thus (X,µ, T ) is measurably sensitive.

To show the converse, suppose (X,µ, T ) is a conservative and ergodic
dynamical system that is not W-measurably sensitive. Then, by Theorem 1,
there is, an isomorphic mod 0 dynamical system (X1, µ1, T1) and a µ1-
compatible metric d1 on X1 that is an isometry. For all δ > 0, choose
any ε < δ, and then for any x ∈ X1 with d1(x, y) < ε, for all integers n,
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d1(Tn1 (x), Tn1 (y)) = d1(x, y) < δ. So neither (X1, µ1, T1) nor (X,µ, T ) can
be measurably sensitive.

Remark. Note that the assumption that the dynamical system is er-
godic is crucial to the above statement. For example, as we mentioned in
Section 3, no transformation can be W-measurably sensitive on a space
with points of positive measure. Nonetheless, there are (nonergodic) trans-
formations on such spaces which are measurably sensitive according to the
definition in [JKL+08].

In the case when the measure space is finite (and a conservative trans-
formation is measure-preserving), we can prove more.

Theorem 2. Let (X,µ, T ) be a finite measure-preserving ergodic dy-
namical system. Then T is either W-measurably sensitive, or isomorphic
to a minimal, uniformly rigid compact group rotation (i.e., a Kronecker
transformation).

Proof. We first show that X is a totally bounded space with respect to
any µ-compatible metric d that is an isometry for T .

Let ε > 0. Let C = µ(B(x, ε/2)) for some x0 ∈ X. Since the metric is
µ-compatible, C > 0. We claim that this is a constant independent of x. In
fact, if we let f(x) = µB(x, ε/2), then

f(Tx) = µ(B(Tx, ε/2)) = µ(T−1B(x, ε/2)) = µ(B(x, ε/2)) = f(x).

As f is continuous and T is transitive (Lemma 5.4), f is constant.
Now choose a largest possible collection of points {x1, . . . , xn} such that

the balls B(xi, ε/2) are all disjoint. Note that the size of any such collection
will be no greater than µ(X)/C, as they all have the same measure. By
the triangle inequality, for any point x ∈ X, there must be an i such that
d(x, xi) < ε, as otherwise the ball B(x, ε/2) would be disjoint from all the
balls B(xi, ε/2). So X =

⋃n
i=1B(xi, ε). Since ε was arbitrary, X is totally

bounded.
Now, as we have seen before, if T is not W-measurably sensitive, there ex-

ists a positively invariant set X1 of full measure such that dT is µ-compatible
for the system (X1, µ, T ), and T is a minimal uniformly rigid isometry. Let
(X2, d2) be the topological completion of the metric space (X1, d). It is
complete and totally bounded, and therefore compact. As before, we extend
the measure µ to X2, and T extends to a continuous transformation T2 on
(X2, d2) that is an isometry with respect to d2.

Clearly, the dynamical system (X2, µ2, T2) is measurably isomorphic to
(X,µ, T ), and T2 is an ergodic isometry on the compact metric space X2,
as desired. Finally, every d2-ball is measurable and contains a d-ball, so the
metric d2 is µ2-compatible.
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Remark. Theorems 1 and 2 also hold for VW-measurable sensitivity.

Appendix. Connections to pairwise sensitivity and other lit-
erature. In their paper [CJ05], Cadre and Jacob introduce the notion of
pairwise sensitivity, which they define as follows. They only consider finite
measure-preserving transformations, so we will also restrict to them in this
appendix.

Definition A.1. Let (X,µ) be a Lebesgue probability space and fix
a metric d on X. An endomorphism T is said to be pairwise sensitive
(with respect to initial conditions) if there exists δ > 0 a (sensitivity con-
stant) such that for µ⊗2-a.e. (x, y) ∈ X × X, one can find n ≥ 0 with
d(Tnx, Tny) ≥ δ.

Since this concept depends on the choice of the metric d, we will often
refer to T as being pairwise sensitive with respect to d.

Cadre and Jacob prove that weakly mixing finite measure-preserving
transformations are pairwise sensitive, and that a certain entropy condition
implies pairwise sensitivity for ergodic transformations.

This notion is very closely related to the notion of W-measurable sensi-
tivity, as the following proposition shows.

Proposition A.1. Let (X,µ, T ) be a dynamical system and d be a µ-
compatible metric on X. Then T is pairwise sensitive with respect to d if
and only if it is W-measurably sensitive with respect to d.

Proof. First suppose that the system is W-measurably sensitive with
respect to d. Then there is a δ > 0 such that for every x ∈ X the set

Yx = {y ∈ X : ∃n, d(Tnx, Tny) > δ}
has full measure. By Fubini’s theorem (for the version we use, see [EG92]),
the set Y = {(x, y) ∈ X × X : ∃n, d(Tnx, Tny) > δ} must have full µ⊗2-
measure in X ×X. So T is pairwise sensitive with respect to d.

Now, suppose that the system is pairwise sensitive with respect to a
µ-compatible metric d. That is, there is a δ > 0 such that the set Y , defined
as before, has full µ⊗2-measure in X ×X.

Take any x ∈ X. We claim that for almost every y ∈ X, there is an
n such that d(Tnx, Tny) > δ/2. Once we have this claim, Proposition 4.2
implies that T is W-measurably sensitive with respect to d.

To prove the above claim, we need to show that the set Sx = {y ∈ X :
∀n, d(Tnx, Tny) ≤ δ/2} has measure zero. Take any y1, y2 ∈ Sx. By the
triangle inequality, for all n we have d(Tny1, T

ny2) ≤ δ. So the pair (y1, y2)
does not belong to the set Y ⊂ X×X. In other words, the Cartesian product
Sx × Sx lies wholly inside the µ⊗2-measure-zero set (X ×X) \ Y . Again by
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Fubini, this is only possible if the set Sx is measurable and has µ-measure
zero.

With this in mind, we see that our Theorem 2 implies the following result
concerning pairwise sensitivity.

Theorem 3. Let (X,µ, T ) be a nonatomic ergodic finite measure-pre-
serving dynamical system. Suppose further that this dynamical system is
not isomorphic mod 0 to a Kronecker transformation. Then, for any µ-
compatible metric d, T is pairwise sensitive with respect to d.

We do need to assume that the metric d is µ-compatible. However, while
Cadre and Jacob never specify any restrictions on their metric, they also
tacitly use several very similar properties. For example, they extensively use
the notion of the support of a measure (i.e., the complement of the largest
open set of zero measure), which is not well-defined without the assumptions
that open and closed sets are measurable, and that the space is separable (if
the space were not separable, the union of all open sets of measure zero may
have positive measure even if measurable). Together, these two properties
are almost sufficient to force the metric to be µ-compatible, as the following
proposition shows.

Proposition A.2. A metric d on a measure space (X,µ) is µ-compatible
if and only if the following three conditions are satisfied:

(1) Every d-ball is µ-measurable.
(2) The space X is separable under d.
(3) The support of µ is the whole of X.

Proof. The fact that if d is µ-compatible then X is separable under d is
shown in [JKL+08]. The other two properties are obvious.

Now, suppose that d satisfies the first two properties. Then the notion
of support is well-defined. Clearly, the support of the measure is the whole
space if and only if every nonempty open set has positive measure, i.e., if d
is µ-compatible.

According to Proposition A.2, to go from µ-compatible metrics to the
metrics Cadre and Jacob use, we only need to require that the support of
the measure is the whole space. This can always be achieved by removing a
set of measure zero from the space.

With this assumption, Theorem 3 sharpens the results of [CJ05].
We also mention a recent work that we learned of from Ethan Akin

after the research for this paper was completed. In [HLY11], Huang, Lu,
and Ye introduce the notion of µ-sensitivity for topological dynamical sys-
tems and study its properties, and in particular show that it is equivalent
to pairwise sensitivity [HLY11, 2.4]. We note that in [HLY11], the authors
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consider topological dynamical systems (continuous maps on compact met-
ric spaces) and put invariant probability measures on them, while we con-
sider measurable dynamical systems (nonsingular maps on standard Borel
spaces) and put compatible metrics on them. We also note that one of the
theorems of Huang, Lu, and Ye, [HLY11, Theorem 5.4], is related to our
Theorem 2.
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