Kudzu: A Self-Balancing P2P File Transfer System

Sean Barker, Marius Catalin lordan, Jeannie Albrecht

Williams College

{09sb,09mci,jral } @williams.edu

Abstract

Many peer to peer file sharing systems to date rely in
part upon centralized components or rigid network struc-
ture. The former approach typically sacrifices robustness
for efficiency whereas the latter sacrifices efficiency for
robustness. In this paper we present Kudzu, a system
that is both fully decentralized and unstructured, yet out-
performs today’s most popular file sharing system, Bit-
Torrent. Key to Kudzu’s design is its automatic peer
structure rebalancing, which obviates the usual explicit
peer management protocols used by peer to peer systems.
We examine the design of our network architecture and
discuss its relationship to existing file transfer systems.
We also provide an empirical evaluation of our current
implementation’s performance on a series of tests con-
ducted on the PlanetLab testbed. We evaluate download
speeds, load capabilities, and bandwidth efficiency.

1 Introduction

Nearly one decade ago, the simple yet powerful concept
of peer to peer network protocol design broke into the
public arena. As each generation of peer to peer sys-
tems has risen, thrived, and withered—from Napster to
Gnutella to Kazaa to BitTorrent—a pattern has emerged:
systems that rely upon centralization in part or in whole,
despite an auxiliary peer to peer structure, thrive and
gain wider adoption. BitTorrent is the best current ex-
ample of this phenomenon, as a system that relies pre-
dominantly upon a centralized “tracker” to act as a di-
rectory service for hosts that wish to share files. In
part, the fear of a fully decentralized approach—that of
the original Gnutella protocol—is justified. To combat
this, researchers developed myriad “structured” peer to
peer systems which typically contain at their heart a Dis-
tributed Hash Table. However, maintenance of this struc-
ture presents its own complexities.

In this paper, we revisit the idea of peer to peer file
sharing without centralized control or structure. In other
words, we ask: is it possible to produce an efficient file
sharing system using a Gnutella-like structure without
any explicit maintenance overhead? We present our ap-
proach and the implementation of our system, Kudzu,
in which peers incrementally and automatically select

Barath Raghavan
UC San Diego
barath@cs.ucsd.edu

neighbors in the peer graph to maximize network per-
formance. A key feature of Kudzu is that nodes require
no explicit maintenance protocol or network probing, yet
still rebalance peer connections in a manner that maxi-
mizes performance. We focus our efforts on designing
a balancing procedure that works and is simple both in
concept and in implementation; as a result, we do not at-
tempt to formulate our learning approach more formally.

Specifically, Kudzu was designed according to the fol-
lowing core principles:

1. The system must be truly decentralized; any peer
may perform every function in the network. Addi-
tionally, the system should intelligently organize it-
self without central information.

2. If a user queries for a file residing somewhere on
the network, the query is guaranteed to find the file.
Furthermore, the file must be found in a reasonable
amount of time.

3. If a requested file exists on multiple peers in the net-
work, all available peers should contribute to sending
the file in order to maximize the requester’s down-
load speed.

4. The network must gracefully and seamlessly handle
a rapidly shifting network topology in which peers
are constantly entering and leaving the network.

We show that despite Kudzu’s fully-decentralized,
maintenance protocol-free approach, it still outperforms
BitTorrent in file transfer tests. Furthermore, we have
evaluated Kudzu on PlanetLab and offer our observations
on how Kudzu’s automated rebalancing can be applied to
numerous existing peer to peer systems.

2 Design Overview

Kudzu is designed to operate as a loosely organized set
of nodes that are individually responsible for ensuring an
efficient overall network topology. Rather than impos-
ing a predefined structure, a set of Kudzu peers consti-
tutes a collection of node-to-node connections with high
redundancy. The network is functionally homogeneous,
though some nodes may become more highly connected
than others due to high available bandwidth.



2.1 Node Additions

New nodes join the Kudzu cluster by contacting any node
already within the network. The new node establishes a
connection with that existing node and asks for a random
selection of the existing node’s neighbors, then connects
to each node in the random selection. A node tests peer
connections for liveness every few seconds by pinging
each of its known peers using an empty Java RMI call. If
a ping fails, the peer is removed from the list of connec-
tions. Each node must maintain at least 3 active peers;
if a node has fewer than 3 peers, it requests new ran-
domly chosen nodes from its remaining peers with which
to establish connections. Nodes always accept new con-
nections from other nodes, even if the accepting node is
already at or above the minimum connection quota. This
means that if a particular node is randomly chosen fre-
quently by its peers, it may end up with a large list of
peers—no maximum number of connections is enforced.

2.2 Queries

Kudzu nodes forward queries to all connected peers, who
then forward the queries along to all of their peers (ex-
cept the sender). Queries are asynchronous and return no
direct response—they are simply forwarded to all other
peers in the network. We impose no TTL, so every node
in the network eventually receives every query. Further-
more, since each node is connected to at least 3 others,
each query is guaranteed to propagate throughout the net-
work using between logs n and n/3 hops, where n is the
number of nodes in the network. The exact number will
depend on how the network structure evolves. Due to
this flooding approach, a given node is likely to receive
the same query multiple times from other nodes.

To avoid infinite query propagation, each node main-
tains a list of the queries received recently so that such
duplicate queries may be discarded. A query is consid-
ered a duplicate if the last identical query was received
within some timeframe (currently set at 20 minutes). An
“identical” query here refers to a request for the same
filename from the same host. In Kudzu, search queries
not only help nodes locate files, but also help balance
the network topology. Since nodes receive some queries
more than once, our aim is to minimize query propaga-
tion overlap while also propagating queries quickly and
preventing mesh partitions.

Queries are instrumental to our rebalancing algorithm.
To accomplish rebalancing, each node keeps count of
how many times it sees each query and the identity
of the node from which it received the query. If the
node sees the same query more than 3 times (where 3
is also the minimum number of connections maintained
by each node), it removes a connection to one of the
nodes that sent one of the duplicate queries. Since nodes
do not forward queries back to the node that sent them,
this heuristic is guaranteed never to split the network in

two. Instead, it simply serves to redistribute connections
from heavily and redundantly-connected nodes to less-
connected ones.

As with new connection requests, nodes always obey
disconnect requests from sending nodes, even if it brings
the receiving node down below its minimum connection
threshold. When this occurs, the node will then simply
follow the usual procedure of connecting to new peers.
Thus, disregarding any other ways in which connections
are established in the network, the sending of queries
across the network will, with high probability, cause it to
converge to a ‘stable’ state in which every node is con-
nected to exactly 3 other nodes (see Section 4.4). There
are several exceptions to the connection removal rule,
however, which we discuss in Section 3.

2.3 File Transfers

Each node maintains an index of the files it has available
to share on the network. When a node receives a query
for a file in its index, it sends a reply to the requesting
node (whose identity is embedded in the query) and also
specifies the file’s name and size. Note that nodes that
have the requested file still forward the query on to all of
their neighbors, allowing multiple senders to serve a file
simultaneously, thereby hastening the transfer.

Each time a new response is received for a file query,
the downloading node opens a new connection to the host
with the file (if one does not already exist) and begins
retrieving 50 KB blocks. When multiple hosts respond
with the file, multiple streams are opened and differ-
ent chunks are simultaneously downloaded. A key de-
sign choice is that these new connections to file-source
hosts remain open after the download is complete and
are treated exactly the same as other connections.

Each connection keeps track of the number of blocks
that have been sent or received along the pipe since the
connection was opened. This serves as a measure of the
connection’s utility and is used to rank connections when
removing a connection as a result of excessive query
propagation. This process is described in detail in Sec-
tion 3.

3 Machine Learning

We construct a P2P network model based on node homo-
geneity and individual simple action. Kudzu establishes
an evolving mesh network topology that adapts to ex-
ternal and internal pressures by rebalancing connections
between nodes to better reflect the current needs of users.

Each node’s primary concern is maintaining a rela-
tively fixed degree of connectivity. If a node finds itself
in a position where it is connected to fewer nodes than its
current threshold, then it actively seeks out other nodes
to connect to through querying its neighbors. The up-
per bound on connections is less strictly enforced and is
allowed to change in accordance to previously and cur-



rently observed trends in the patterns of data transfer and
query propagation.

In order to adjust the threshold and keep track of activ-
ity at the level of individual nodes, we associate a "trans-
fer load” metric to every node that estimates the average
amount of useful data that passes through each of the
node’s connections at any given time. Initially, each new
node starts with a load of 0 on all of its connections and
each time a chunk of data (we chose 50 KB as a reason-
able partition size of file data) is transmitted across the
network, both the sending and receiving nodes increase
the transfer load on this connection. To ensure that old
data and sparse spikes in activity on a certain connection
don’t provide a high utility to a connection indefinitely,
we decrease the metric by a factor of 2 after a carefully
selected timeout value.

Initially, the connectivity minimum threshold is 3
nodes. Our approach is adaptable and can handle con-
nection levels far above this default level. The network
topology detects an imbalance through the query prop-
agation mechanism. As each query is forwarded to all
neighbors (with the exception of the one from whom
it was received), well-connected nodes begin to receive
many duplicate queries, prompting them to initiate con-
nection drops. When a node decides to drop a connec-
tion, the natural approach would be eliminating the one
with the lowest transfer load. However, the algorithm
incorporates factors beyond simply maintaining the old
threshold level for number of connections.

There are three special cases in which the node does
not drop the connection, but instead modifies its thresh-
old to accommodate for another useful connection. First,
if the connection is heavily and consistently used, we
keep it, since it signals that the current node is impor-
tant to the rest of the network; one of our primary design
goals is to aid information propagation above all else.
Second, nodes that have very recently started download-
ing from or uploading to this node are granted immu-
nity from being dropped for a period of time, after which
the usual rules apply and the connection may be subse-
quently dropped. Third, newcomer nodes to a network
are granted similar immunity until they have a reasonable
chance to begin uploading or downloading. Thus, an in-
coming node will not have to bounce around the network
and will be given the opportunity to establish stable con-
nections while it searches for or begins to transfer files.

Our adaptable mechanism for maintaining a variable
node connection count ensures that the network topol-
ogy remains balanced in real-time and applies itself to
the demands of the users at any given time. As download
concentration shifts from one area of the network to an-
other, so do the thresholds for the heavily used areas in-
crease to match this demand. Furthermore, our rebalanc-
ing technique is completely decentralized and requires
no outside maintenance or oversight. The system runs

Figure 1: Typical Kudzu network topology: unbalanced
(left) and balanced (right).

without supervision, evolves on its own, and adapts to
changing environment conditions using only its internal
algorithms in a fully autonomous fashion.

4 Evaluation

We evaluated 3 performance measures of Kudzu: down-
load speed, peer/overlay overhead, and connection re-
dundancy (which serves as an imperfect measure of fault
tolerance). We also examined the self-adjusting aspect of
the network to determine how well the network can bal-
ance itself. Each metric is discussed individually below.

4.1 Network Topology

A Kudzu network makes no assumptions about how or
where nodes are going to join, so the network may be
initialized with an arbitrarily unbalanced structure. To
evaluate network topology on a simple network, we be-
gan with a single Kudzu node and then had twenty Plan-
etLab [7] nodes start and connect to the first node. We
then disconnected the first node from the network, forc-
ing the twenty remaining nodes to randomly select new
neighbors. The resulting network was fairly unbalanced,
as some nodes were randomly selected more often than
others to replace the initial node as the third neighbor.

To test our rebalancing scheme, we then had two dif-
ferent nodes sequentially send 10 queries each to the rest
of the network. There should be no reason to expect
different results from this process than from having all
nodes send queries, as any given node n will drop con-
nections as long as at least one other node is sending
queries (which will propagate with duplicates to n). The
former and resulting networks as a result of rebalancing
are shown in Figure 1.

We see that the original network has a high (and, we
argue, excessive) degree of redundancy. Some nodes
have as many as 7 connections, while others have only
3, so these inconsistent additional connections are gen-
erally undesirable. After automatic balancing as a result
of queries sent across the network, the network converges
to the minimum desired number of connections per node:
no node has more than 4 connections. Connections are
also relatively evenly distributed across the network.



Univ of Texas Receiver (US) ——
Nara IST Receiver (JP) =

1800

1600

1400

1200

1000

800

Transfer Rate (KB/sec)

600

400

200

0 L L L L L L
1[WMS] 2[USF] 3[BKL] 4[ORG] 5[MIT] 6[COL] 7 [NAI/TEX]
Number of Senders

Figure 2: Total download speeds for a single file being
transferred.

4.2 Download Performance

To test download performance, we initialized a network
of 20 nodes consisting of PlanetLab machines located at
8 sites spread across the continental United States. Tests
were conducted to see how well download speeds would
scale when multiple peers shared the same file with a sin-
gle receiver. We ran the tests for two receivers: one from
a centrally located, low-latency node (at the University
of Texas) and one from a remote, high-latency node (at
Nara IST in Japan). Average ping delays to the sites from
Massachusetts were 60 ms and 200 ms, respectively.

In each test we transferred a 38 MB file to a single
machine from a certain number of senders. We mea-
sured the average download speed over the the entire file,
then added another sender and ran the test again. Up to 7
senders were evaluated in this way for each receiver. The
results of our tests are displayed in Figure 2. The results
demonstrate that Kudzu takes full advantage of available
bandwidth. We see dramatic speed increases as the num-
ber of sending nodes increases. Furthermore, the trans-
fer speeds attained by the Nara IST node show that even
a remote node in geographic terms may see significant
speed increases by downloading from multiple senders
simultaneously. Our tests do not reveal any performance
plateau, and it is likely that we may achieve even greater
performance by adding more senders —we assume that
maximal download speed is ultimately limited only by
the total bandwidth available at the receiver.

To evaluate our system’s transfer potential in relation
to existing P2P systems, we performed a test on Plan-
etLab that compared download speeds on our client to a
standard BitTorrent client. For both our network and Bit-
Torrent, we seeded a 50 megabyte text file to 12 initial
peers scattered around the globe and then had 12 more
peers simultaneously connect to the network and down-
load the file. The cumulative distribution function of
completed downloads over three averaged runs per net-
work are shown in Figure 3. Overall, our system com-
pared favorably in raw download speeds, even running

Percent complete (%)

BitTorrent
Kudzy -

10 20 30 40 50 60 70 80 90 100 110
Time (sec)

Figure 3: CDF showing percentage of nodes completing
file download for Kudzu and BitTorrent.

on top of an unoptimized, synchronous RMI implemen-
tation. We anticipate easily achievable speed gains on
top of this through implementation optimizations.

4.3 Communication overhead

To simulate a realistic scenario, we created a network us-
ing as many PlanetLab nodes as possible. As before, we
started a single entry node and then connected as many
nodes on PlanetLab as we could contact; we were able to
sustain roughly 420 of PlanetLab’s 864 nodes during the
majority of testing.

To evaluate the network’s bandwidth overhead, we
must first differentiate between ‘good’ bandwidth and
‘bad’ bandwidth. Good bandwidth refers to queries that
a node receives that it has not yet received—these unique
queries impart new information to the node, and are crit-
ical to the network’s functionality. However, we wish to
minimize duplicates. Thus, a suitable measure of band-
width efficiency in the network is the ratio of unique to
duplicate queries received.

Each node ran a test client that automatically sent 20
queries spread out in random intervals of 5 to 20 seconds.
We ran two types of load tests: one where no files were
present on the network (fileless test), and one where files
were present (file download test). In the latter case, we
selected 3 nodes and placed the same set of 10 files (each
of size 10 MB) into the three node’s shared directories.
The three nodes were located in the United States, Eu-
rope, and Asia, and each had low relative latency. When
testing with the 3 ‘server’ nodes (though this is techni-
cally a misnomer, as they ran exactly the same software
as every other node), all test clients queried for a nonexis-
tent file 80% of the time (by querying for the local times-
tamp) and requested one of the 10 actual files (selected
at random) 20% of the time. As per the usual Kudzu pro-
cess, when a file completed downloading to a node, that
file was added to the node’s list of shared files and could
be retransmitted to other nodes.

In both cases, every client tallied the number of unique



100

Average Unique Queries

Server Average Unique Queries -

80 [

Unique Queries (%)

0 500 1000 1500 2000 2500 3000

Elapsed time (sec)

Figure 4: Unique query percentages in file download test.

and duplicate queries received. Every 15 seconds, the
current counts were sent to a centralized monitor to ag-
gregate and then reset. The monitor averaged over all
values received in each 15 second window to output the
final results. The file and fileless tests were run for ap-
proximately 2 hours, and approximately 15 minutes re-
spectively.

The overall average proportions of unique queries to
total queries (unique + duplicates) for the file download
test and the fileless test were 20% and 40% respectively.
When no files are present (and thus, no downloads occur
that create new connections), the network should quickly
stabilize to nearly 3 connections per node. Thus, one
would expect 33% unique queries, as each query would
be received once on each connection. Our result of close
to 40% indicates a significant increase in efficiency as a
result of the way in which the network balances—many
duplicate queries are removed from the network before
they have a chance to extensively propagate. In the file
download test, files are constantly downloading, result-
ing in a greater average number of connections; this ex-
plains the lower percentage of unique queries. Results
of the file download test at each 15 second time slice are
graphed in Figure 4. Results are shown for both the entire
network and for the three ‘server’ nodes alone. Again,
we see worse overall performance from the server nodes
as a result of their higher number of connections than the
rest of the network. Given the number of connections
established to the server (discussed below), it would be
difficult to expect high percentages from these nodes.

4.4 Connection Redundancy

In addition to evaluating the proportion of unique
queries, we also recorded the current number of connec-
tions in each data point sent to the monitor. This repre-
sents one of the cases in which we would like the net-
work to allow certain nodes to have many connections
—the server nodes should be able to maintain many con-
nections, so that other nodes querying for files will en-
counter the servers quickly. The results over the 2 hour

5 Average Connections
40 + it Server Average Connections -

Number of Connections

0 500 1000 1500 2000 2500 3000
Elapsed time (sec)

Figure 5: Number of peer connections in file load test.

test period are displayed in Figure 5.

The server nodes experienced a sustained load of sev-
eral times that of other nodes. As more nodes make file
requests, the number of concurrent downloads happening
over the network gradually increases to a peak, and we
can see this trend in both node groups (as the ordinary
nodes receive complete files and begin serving them to
others). As the 20 queries sent by the test clients begin to
complete and the number of uploading nodes increases,
the differentiation of the server nodes decreases. If al-
lowed to run long enough, we should see both lines inter-
sect and then run roughly in tandem. The average num-
ber of connections in the file download test described
above and the average number of connections in the file-
less test was 5.3 and 3.3 connections respectively. As we
predicted, in a static environment (the fileless test), the
average number of connections is very close to 3, while
in a fluid environment (the file download test), the aver-
age number of connections is modestly higher.

5 Future Work

From a high-level perspective, Kudzu’s adaptation al-
gorithm tries to approximate the usefulness of a given
P2P link in an unstructured network by assessing transfer
speed and incoming query relevance for that link. How-
ever, one could consider using a more complex decision
function which combines a larger set of variables such
as average uptime of the peer on the network, node fail-
ure rates, or even geographic location, all of which con-
stitute information that is either readily available, or in-
expensive to compute. This scenario maps itself quite
nicely onto various machine learning algorithms (regres-
sion techniques, neural nets, SVMs) which could be used
by each node to determine coefficients in a linear com-
bination optimizing to a dependent variable representing
network effectiveness.

Other improvements to Kudzu’s self-adaptive behav-
ior could most likely be made by tweaking parame-
ters in the network (particularly with regard to timeouts
and transfer rate requirements)—or even better, allowing



nodes in the network to tune parameters themselves.

Finally, there are several important issues in P2P net-
works that we do not address at all, such as anonymity
concerns and the problems of dealing with misbehaving
nodes. However, nothing in Kudzu precludes addressing
such issues in the future.

6 Related Work

Kudzu’s architecture was initially inspired by Gnutella’s
initial decentralized structure [3]. Like Gnutella, Kudzu
lacks an index of available files and floods queries
throughout the network. However, unlike Gnutella, we
impose no TTL value on queries, allowing them to prop-
agate. TTL’s are inappropriate in an unstructured net-
work, where “good” nodes (e.g., based on geographic
or network locality, overlap in interests, etc.) may find
themselves on opposite sides of the network. Ulti-
mately, Gnutella’s initial architecture, combining flood-
ing and ad hoc network neighbor selection, proved un-
scalable, and subsequent architectures adopted a hier-
archical tree-based architecture with stable, bandwidth-
plentiful super-peers near the root. In contrast, Kudzu
addresses the problem without a rigid well-defined struc-
ture, but with an emergent structure formed from each
node’s peer-selection process.

BitTorrent [4] is the dominant P2P file sharing system
today. Unlike Kudzu and other decentralized systems,
BitTorrent uses centralized trackers and leaves network
organization to individual users. Trackers are a single
point of failure and impose a burden on the user to find
them through out-of-band means. Kudzu leverages Bit-
Torrent’s “swarming” phenomenon by adopting its ap-
proach to downloading multiple pieces of a file from dif-
ferent peers. We are currently exploring how to adapt
BitTorrent’s “tit-for-tat” incentive mechanisms to Kudzu.

Recent work proposes a neighbor selection scheme
that connects nodes likely to exchange data in the fu-
ture [2]. In contrast, Kudzu nodes initiate queries
to guide the network’s organization. Instead of off-
line analysis, Kudzu evaluates connection utility on-line
based on a transfer-load metric that conveys the useful-
ness of each link in the node mesh. The technique ac-
commodates sudden shifts in interest and search pattern
allowing the structure to adapt as peers’ change, obviat-
ing expensive training trials to identify overlapping data
patterns in the existing network.

Kuhn et al. uses a hashtable approach mitigating the
impact of churn in a P2P network given a worst-case or-
acle adversary [5]. Kudzu does not address churn in-
duced by a worst-case adversary, although it is designed
to adapt to churn in the underlying network.

Bernstein et al. focus on ensuring fast data transfer
using the Gnutella network topology [1] by employing a
Markov Decision Process approach to determine which
node to select to download a file. The approach favors

connections with high utility. However, Kudzu does not
limit the number of possible simultaneous downloads,
thus alleviating the need to select between nodes which
hold a desired file. As in BitTorrent, the approach allows
Kudzu to retrieve portions of a file from slower nodes.

Other previous work proposes to improve Gnutella
query flooding by controlling node degree using ran-
dom walks [6]; Kudzu simply floods queries under the
assumption that nodes that cannot handle them are not
suitable download candidates. Kudzu does recognize the
importance of node degree to performance, but use alters
it dynamically based on actual transfers and prunes the
connection list accordingly. In contrast, Lv et al. [6] as-
sign a fixed maximum bandwidth potential to each node
and attempt to guide traffic in the network by changing
connection ownership based on the gap between actual
traffic and this pre-defined maximum capacity. Kudzu’s
design reflects the view that potential bandwidth is not
relevant in real-time network conditions, as bandwidth
fluctuates on short time-scales.

7 Conclusion

We have found that despite its decentralized, unstruc-
tured design, Kudzu is a robust, highly scalable file trans-
fer protocol. By allowing each node to auto-balance its
peer connections to maintain both network reliability and
performance, the network reaches a dynamic equilibrium
depending on the volume of data moving through its
links, favoring active nodes and ensuring that queries are
answered expediently and files are transferred rapidly.
Our tests show that Kudzu has strong potential, as well
as possibilities for future improvement. We believe that
Kudzu provides a new avenue for unstructured peer to
peer file transfer, one that leverages intelligent and inde-
pendent adjustment of the network by each node.

References

[1] D. S. Bernstein, Z. Feng, B. N. Levine, and S. Zilberstein. Adap-
tive Peer Selection. In Proceedings of the International Workshop
on Peer-to-Peer Systems (IPTPS), 2003.

[2] R. Beverly and M. Afergan. Machine Learning for Efcient Neigh-
bor Selection in Unstructured P2P Networks. In Workshop on
Tackling Computer Systems Problems with Machine Learning
Techniques (SysML), 2007.

[3] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker. Making Gnutella-like P2P Systems Scalable. In Pro-
ceedings of the ACM SIGCOMM Conference (SIGCOMM), 2003.

[4] B. Cohen. Abstract Incentives Build Robustness in BitTorrent,
2003.

[5]1 F. Kuhn, S. Schmid, and R. Wattenhofer. A Self-Repairing Peer-
to-Peer System Resilient to Dynamic Adversarial Churn. In Pro-
ceedings of the International Workshop on Peer-to-Peer Systems
(IPTPS), 2005.

[6] Q. Lv, S. Ratnasamy, and S. Shenker. Can Heterogeneity Make
Gnutella Scalable. In Proceedings of the International Workshop
on Peer-to-Peer Systems (IPTPS), 2002.

[7]1 L. L. Peterson, A. C. Bavier, M. E. Fiuczynski, and S. Muir. Expe-
riences Building PlanetLab. In Proceedings of the ACM/USENIX
Symposium on Operating System Design and Implementation
(OSDI), 2006.



