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Discovering functional connectivity between and within brain regions is a key concern in neuroscience. Due
to the noise inherent in fMRI data, it is challenging to characterize the properties of individual voxels, and
current methods are unable to flexibly analyze voxel-level connectivity differences. We propose a new func-
tional connectivity method which incorporates a spatial smoothness constraint using regularized optimiza-
tion, enabling the discovery of voxel-level interactions between brain regions from the small datasets
characteristic of fMRI experiments. We validate our method in two separate experiments, demonstrating
that we can learn coherent connectivity maps that are consistent with known results. First, we examine
the functional connectivity between early visual areas V1 and VP, confirming that this connectivity structure
preserves retinotopic mapping. Then, we show that two category-selective regions in ventral cortex – the
Parahippocampal Place Area (PPA) and the Fusiform Face Area (FFA) – exhibit an expected peripheral versus
foveal bias in their connectivity with visual area hV4. These results show that our approach is powerful, wide-
ly applicable, and capable of uncovering complex connectivity patterns with only a small amount of input
data.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Functional Magnetic Resonance Imaging (fMRI) has been widely
adopted by the neuroscience community primarily because it allows re-
searchers to unobtrusively sample activity patterns from populations of
neurons across the entire human brain, at a fine spatial scale (typically a
few millimeters). However, many methods for identifying distributed
functional networks underutilize the spatial resolution of fMRI, consid-
ering only the aggregate properties of groups of voxels. For example,
when computing functional connectivity between brain regions, activi-
ty is often spatially averaged within each Region of Interest (ROI) and
simple statistical relationships (e.g. correlation) between these mean
timecourses are used as measures of connectivity between the regions
(reviewed in Rogers et al., 2007).

ROIs are generally defined by a contrast between two types of
stimuli, constrained by rough anatomical location. However, there is
no reason to assume that all voxels within an ROI have identical func-
tional properties. Indeed, recent work has achieved some success in
dividing existing ROIs into functional subregions. For example, lateral
occipital complex (LOC) (defined in Malach et al., 1995) has been
shown to contain two functionally distinct subregions (Grill-Spector
et al., 1999), and the extrastriate body area (EBA) (defined in
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Downing et al., 2001) has been split into three separate limb-
sensitive areas (Weiner and Grill-Spector, 2011).

Recent work has begun to investigate intra-ROI structure using
measures of functional connectivity. These methods have provided
evidence of subdivisions within regions such as the thalamus
(Zhang et al., 2008), medial frontal cortex (Kim et al., 2010), the
amygdala (Roy et al., 2009), anterior cingulate cortex (Margulies et
al., 2007), and the precuneus (Margulies et al., 2009), and have
been used to uncover the functional connectivity structure of early vi-
sual cortex (Heinzle et al., 2011).

However, thesemethods are unable to jointlymodel the functional
connectivity properties of individual voxels for typical fMRI dataset
sizes. Almost all current methods avoid simultaneously learning the
connectivity properties for all voxels, by spatially downsampling to a
small number of subregions (Margulies et al., 2007; Roy et al., 2009),
only learning parameters for one voxel or subregion at a time (Chai
et al., 2009; Cohen et al., 2008; Kim et al., 2010; Zhang et al., 2008),
or both (Margulies et al., 2009). Each of these approaches has some
disadvantages. Downsampling requires prior knowledge of the ana-
tomical subdivisions in a region (Roy et al., 2009) or of the relevant
spatial scale of connectivity differences (Margulies et al., 2007), mak-
ing it ill-suited for exploratory studies. Learning voxel parameters sep-
arately canmake comparisons between voxels difficult; for example, if
two voxels are assigned different levels of connectivity with a seed re-
gion, there is generally no way to tell whether these two voxels pre-
dict different parts of the seed timecourse, or if one voxel is simply a
noisy copy of the other. Jointly learning connectivity weights allows
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us to pinpoint those voxels that contribute unique information about
the seed region, by simultaneously considering the timecourses of all
voxels.

Support vector regression (SVR) can learn joint voxel-level con-
nectivity maps, but requires a significant amount of data; for example,
Heinzle et al. (2011) use more than 40 min of training data (1600
timepoints) to learn connectivity structures in early visual areas. Scar-
city of training data is a common obstacle for characterizing individual
voxels in fMRI experiments. Typical fMRI datasets record activity from
tens of thousands of voxels in the human brain, but with only about
a thousand timepoints per voxel. Several methods have been suc-
cessfully implemented to boost the number of recorded timepoints
(e.g. rapidly scanning only a select portion of the brain, (Bouvier and
Epstein, 2011; Scalf et al., 2011)), but all fMRI studies must contend
with a severe data shortage for individual subjects caused by this
limitation. A recent survey of MVPA techniques (Misaki et al., 2010)
has demonstrated empirically that low-complexity models tend to
perform better at decoding information from patterns of activity than
high-complexity models, which is theoretically plausible given the
limited number of timepoints available for model training.

Therefore, there is still a need for a method that can estimate
voxel-level connectivity structure with data set sizes more typical
of fMRI experiments. For example, when investigating stimulus-
category-dependent changes in connectivity patterns, the amount of
data for each category can be on the order of only a hundred
timepoints. To address this issue, we propose a spatially regularized
method for examining connectivity differences within ROIs, which is
specifically tailored to small training sets typical in the fMRI setting.
Our regularization approach simply imposes the constraint that con-
nectivity properties should vary smoothly across voxels, a highly
plausible assumption given the nature of fMRI data. Much prior
work has been dedicated to incorporating spatial regularization into
MRI and fMRI analyses, with goals such as functional classification
and regression (Grosenick et al., 2011; Ng and Abugharbieh, 2011),
classification of gray matter concentration maps (Cuignet et al.,
2010), and inter-subject alignment (Conroy et al., 2009). However,
none of these regularized models are specifically searching for evi-
dence of voxel-level structure within an individual ROI.

In this paper,wepresent a spatially regularizedmethod for uncovering
connectivity differenceswithin ROIs, and demonstrate that it is possible to
discover consistent structures using only a small amount of training data.
We validate our approach using two different experiments, for which the
ground truth connectivity is already known. In the first experiment, we
show that we can recover retinotopic connectivity patterns between
early visual areas V1 andVP. In the second,we replicate the known eccen-
tricity biases in the connectivity between visual area hV4 and both the
Parahippocampal Place Area (PPA) and the Fusiform Face Area (FFA),
without using a specialized experimental design.

Materials and methods

Traditional connectivity analysis

The simplest way to characterize functional connectivity between
two ROIs is to extract mean timecourses by spatially averaging over
all the voxels in each ROI, then computing the Pearson product–
moment correlation coefficient (r value) between the two mean
timecourses. A high r2 value indicates strong functional connectivity
between the pair of ROIs.

We can reformulate this analysis as a linear regression problem in
which we use voxel activation values from the first timecourse to pre-
dict the second timecourse. Specifically, we choose a slope a and an
offset b minimizing

���� a⋅meanv A1
� �

þ b
� �

−meanv A2
� �����2

2
ð1Þ
where A1 and A2 are the (# voxels×# timepoints) data matrices from
two ROIs, and meanv denotes an average across voxels. The r2 value is
then equivalent to the fraction of variance explained (the increase in
prediction accuracy from using a and b, as opposed to just predicting
the mean of the second timecourse, (Stockburger, 1996)):

r2 ¼ Fraction of Variance Explained
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where meant denotes an average across time.
We can interpret a⋅meanv1(A

1) as a weighted sum, in which every
voxel shares the same weight c=a/(#of voxels in A1). This allows
us to rewrite the traditional correlation method as an optimization
problem in a more general form:

minimize
a;c;b

���� aT ⋅A1 þ b
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−meanv A2
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2

subject to a ¼ c⋅1:
ð2Þ

This is a convex optimization problem, and can be solved using a
standard optimization package (all optimization problems in our
paper are solved using CVX, a package for specifying and solving con-
vex programs, (Grant and Boyd, 2011)).

Regularized connectivity method

Although the basic connectivity method described above provides
valuable insight into the functional organization of the human brain,
it lacks a principled way to take into account voxel-level spatial infor-
mation present in the fMRI signal. However, simply removing the
constraint that all voxels must have the same weight leads to severe
overfitting on typical fMRI datasets, as will be demonstrated in the re-
sults section. Rather than revealing interesting, generalizable connec-
tivity patterns, the learned maps are driven mainly by noise in the
training data and fail to replicate across runs. In order to obtain mean-
ingful weight maps, we must place a constraint on the voxel weights
which is less restrictive than that of the traditional method (all
weights equal), but more restrictive than the unconstrained method
(all weights independent).

One plausible assumption is that voxel connectivity properties are
likely to be spatially correlated, with nearby voxels typically having
more similar connectivity properties than spatially distant voxels.
This reflects a common view of cortical organization, and is especially
applicable to blood-oxygen-level dependent (BOLD) signals such as
fMRI, since the hemodynamic response is spatially smooth.

To incorporate this assumption, we developed a new method of
assessing functional connectivity patterns within ROIs (Fig. 1). We
define an extension of the original optimization problem (Eq. (2)), re-
placing the constraint that weights for all voxels must be equal with a
spatial regularization term in the minimization objective:

minimize
a;b

���� aT ⋅A1 þ b
� �

−meanv A2
� �����2

2
þ λ

����D⋅a����2
2
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D is the voxel connectivity matrix, which we design to penalize the
mean squared difference between the weight ai of voxel i, and the
weights of voxel i's neighbors. Each row of D represents a directed
edge from a voxel i to an adjacent voxel j: all entries in a row are

zero, except for the jth element (equal to 1=
ffiffiffiffi
di

p
) and the kth element

(equal to −1=
ffiffiffiffi
di

p
), where di is the number of neighbors of voxel i.

Thus the regularization term is
����D⋅a����22 ¼ ∑N

i¼1
1
di
∑j∈ni ai−aj

� �2
where N is the number of voxels in A1 and ni is the set of i's neighbors.
The hyperparameter λ controls the strength of the regularization,
trading off between an a that gives a good prediction of the seed
timecourse A2 and an a that is spatially smooth. λ can take on any



Fig. 1. Comparison of connectivity maps learned from traditional (a) and regularized
(b) methods. (a) In traditional functional connectivity analysis, connectivity with a
seed region (blue) is assumed to be identical for all voxels in an ROI (red). (b) Our
method can learn a map of weights in an ROI that describes the voxel-level connectiv-
ity between each voxel and the seed region. It is possible to learn these maps using a
small amount of training data by imposing a spatial smoothness constraint.
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positive value, with λ→0 producing completely unregularized maps,
and λ→∞ producing completely smooth (constant) maps.

In this paper, we define the voxel neighborhoods ni to enforce
smoothness along the cortical surface. After mapping an ROI onto a
cortical flat map, we define the neighborhood of each voxel to be its
k-nearest neighbors. This approach is suitable for ROIs that are
known to have retinotopic structure on the cortical surface, such as
early visual areas. Alternatively, a more general approach could sim-
ply define ni to be all spatially adjacent voxels (touching voxel i at
least on a corner in the three-dimensional representation of the par-
ticular subject's brain).

As in the traditional method, this optimization problem is convex
and therefore has a global optimum that can be found efficiently. On
our test machine (with a 3 GHz processor) the optimal a can be found
within 5 s, for a typical region with a few hundred voxels and a few
hundred timepoints.

Datasets

Human subjects
We tested our functional connectivity method on two separate

datasets. Both experiments were approved by the Institutional Re-
view Board of Stanford University, and all subjects gave their written
informed consent. Subjects were in good health with no past history
of psychiatric or neurological diseases, and had normal or corrected-
to-normal vision. 13 subjects (1 female; age: 22–26 years; including
one of the authors) participated in the first experiment, and 8 subjects
(2 female; age: 23–26; including one of the authors) participated in
the second experiment.

Scanning parameters
For both experiments, imaging data were acquired with a 3 Tesla

G.E. Healthcare scanner. A gradient echo, echo-planar sequence was
used to obtain functional images [volume repetition time (TR), 2 s;
echo time (TE), 30 ms; flip angle, 80°; matrix, 128×128 voxels;
FOV, 20 cm; 29 oblique 3 mm slices with 1 mm gap; in-plane resolu-
tion, 1.56×1.56 mm]. The functional data were motion-corrected,
each voxel's mean value was scaled to equal 100, and linear trends
were removed from each run, using the AFNI software package
(Cox, 1996). No other preprocessing (e.g. spatial smoothing, slice
timing correction, temporal smoothing) was applied. We collected a
high-resolution (1×1×1 mm voxels) structural scan (SPGR; TR,
5.9 ms; TE, 2.0 ms; flip angle, 11°) in each scanning session. Images
were presented using a back-projection system (Optoma Corpora-
tion) operating at a resolution of 1024×768 pixels at 75 Hz.

Visual stimuli and experimental design
For our first experiment, we collected early visual cortex re-

sponses from 13 subjects. We used a typical retinotopic mapping pro-
tocol, in which a checkerboard pattern undergoing contrast reversals
at 5 Hz moved through the visual field in discrete increments (Sayres
and Grill-Spector, 2008). First, a wedge subtending an angle of 45°
from fixation was presented at 16 different polar angles for 2.4 s
each. Next, an annulus subtending 3° of visual angle was presented
at 15 different radii for 2.4 s each. Each subject passively observed
two runs of 6 cycles in each condition, yielding 512 timepoints per
subject (see Fig. 2).

Our second dataset consists of PPA, FFA, and hV4 responses from
8 subjects. We presented two types of stimuli, as shown in Fig. 2:
(1) boats and cars on a blank white background (isolated objects);
and (2) boats and cars with a street or water scene background (ob-
jects in context). Images (450×450 pixels; subtending 24×24° of vi-
sual angle) were presented 100 pixels (5°) away from fixation in
randomly determined directions. Subjects were informed that each
image contained either a boat or a car, and were asked to indicate
as quickly as possible whether the object was on the left half of the
image or the right half of the image (using a button box). Subjects
performed 4 runs, with 16 blocks per run (with a 14 s gap between
blocks) and 9 images per block. The first 8 blocks of each run showed
a boat or car placed in a photographic scene; for each block, the object
could violate a semantic relationship (appearing in the wrong type of
scene, e.g. a boat on a city street) and/or a geometric relationship
(appearing in the wrong position in the scene, e.g. a car above a
tree rather than on the street). Each presentation consisted of a
500 ms fixation cross, an image flashed for 100 ms, a 300 ms mask,
and then a 1300 ms response period (blank gray screen). The last
8 blocks of each run showed a boat or car on a white background;
these images were identical to those presented in the first eight
blocks, with the backgrounds removed (and presented in a different
random order). Each presentation consisted of a 500 ms fixation
cross, an image flashed for 350 ms, and then a 1300 ms response pe-
riod (blank gray screen). The total number of timepoints for each of
the 8 subjects was 1224 (306 per run).

ROIs

In order tomeasure the eccentricity biases of PPA and FFA in the sec-
ond experiment, we defined these regions using standard localizer runs
conducted in a separate fMRI experiment. Subjects performed 2 runs,
each with 12 blocks drawn equally from six categories: child faces,
adult faces, indoor scenes, outdoor scenes, objects (abstract sculptures
with no semantic meaning), and scrambled objects. Blocks were sepa-
rated by 12 s fixation cross periods, and consisted of 12 image presen-
tations, each of which consisted of a 900 ms image followed by a
100 ms fixation cross. Each image was presented exactly once, with
the exception of two images during each block that were repeated
twice in a row. Subjects were asked to maintain fixation at the center
of the screen, and respond via button-press whenever an imagewas re-
peated. PPA was defined as the top 300 voxels near parahippocampal
gyrus for the Scenes>Objects contrast, and FFA was defined as the
top 100 voxels near fusiform gyrus for the Faces>Objects contrast.
The volume of each ROI in mm3 was chosen conservatively, based on
previous results (Golarai et al., 2007). The locations of early visual



(a) (b)

Fig. 2. Stimuli used in our two datasets. (a) The first dataset consists of responses to two flickering checkerboard patterns: a 45° wedge which rotates clockwise through the visual
field, and an annulus subtending 3° of visual angle that expands outward from fixation. (b) The second dataset consists of cars and boats, presented either in isolation or in a scene
context.
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areas V1, VP, and hV4were delineated on a flattened cortical surface for
each subject, using a horizontal meridian vs. vertical meridian general
linear test from the retinotopicmapping data to give the boundaries be-
tween retinotopic maps.

Results

VP-V1 connectivity

Weknow that voxels in early visual cortex exhibit strongly retinotopic
population receptive fields (Dumoulin andWandell, 2008). Recent work
has shown that the structure of functional connectivity between early vi-
sual areas preserves retinotopic organization. Specifically, the activity of a
voxel in V3 is best predicted by voxels in V1 that correspond to the same
retinotopic position in the visual field (Heinzle et al., 2011).

In this section, we validate our method by showing how it can be
used to discover such connections between retinotopic areas of the
early visual cortex. We apply our connectivity method to the early vi-
sual cortex dataset with V1 as area A1 and a single voxel in VP (ven-
tral V3, or V3v) as area A2 (Eq. (3)). For each voxel in VP, we obtain a
separate connectivity map a of voxel weights in V1.

To quantitatively measure the precision of the learned V1 maps,
we first assign a preferred angle and eccentricity to each voxel in V1
and VP. We use the t-statistics from a standard general linear model
(GLM) to quantify the preference of each voxel to each wedge angle
and each annulus radius (Holmes et al., 1997). Specifically, for each
voxel v in the two areas, we take a weighted average of all stimulus
angles, with weights proportional to that voxel's t-statistic for that
angle θi (ignoring negative t-statistics):

prefθ vð Þ ¼ tan−1

∑
i
��tvi >0

� 	 tvi ⋅sin θið Þ

∑
i
��tvi >0

� 	 tvi ⋅cos θið Þ

0
BBB@

1
CCCA

where θi∈{0,22.5,45,67.5,…337.5} and ti
v is the marginal t-statistic

for angle i at voxel v.
Similarly, we compute the preferred eccentricity for each voxel v

by taking a weighted average of the stimulus radii Ri:

pref r vð Þ ¼
∑

i
��tvi >0

� 	 tvi ⋅Ri

∑
i
��tvi >0

� 	 tvi
where Ri∈{0.73,1.46,2.92,4.38,…18.98,19.71} and ti
v is the marginal

t-statistic for radius i at voxel v.
Finally, we can estimate the position of the population receptive

field for v by converting to Cartesian coordinates:

RF vð Þ ¼ pref r vð Þ⋅ cos prefθ vð Þð Þ; sin prefθ vð Þð Þ½ �:

Given the population receptive field locations for each V1 and VP
voxel, we can compare the receptive field RF(v) of each voxel v in
VP with the receptive fields of the V1 voxels in v's connectivity map.
If the V1 connectivity map for voxel v preserves retinotopic organiza-
tion, then the V1 voxels with high positive weights should have the
same retinotopic position as v. We therefore take a weighted average
of the V1 receptive fields, in which the weight for each V1 voxel cor-
responds to its learned connectivity weight (negative weights are set
to zero for this computation). This allows us to compare the receptive
field of VP voxel v with that generated by the connected voxels in V1,
as shown in Fig. 3. To ensure that the receptive field estimates are an
independent measure of performance, we compute the receptive field
positions using the first run of the wedge and annulus data, and learn
connectivity maps using the second run.

Fig. 4 describes the results across all 13 subjects, with λ=103 and
k=10. We observe a marked decrease in the magnitude of the recep-
tive field differences between VP and V1 when adding regularization,
with the median difference reduced by an average of 31% (t(12)=
11.19,pbb0.01, two-tailed paired t-test). With regularization, the
V1 maps become much more precise, with the majority of the posi-
tive learned V1 weights falling in a retinotopic location similar to
that of the VP voxel that generated them. This result demonstrates
that our regularized method produces V1 maps that are not only spa-
tially coherent, but also functionally correct. It also shows that our
method can perform well even with very little data; we use only
256 timepoints to estimate connectivity maps over all ~1000 V1
voxels. The performance of any connectivity method on this dataset
will be limited by the uncertainty in our VP receptive field position
estimates (introduced by the limited number of wedge and annulus
positions used, and the small number of temporal samples); we can
approximate this uncertainty by comparing the RF(v) calculated
from a single run to the RF(v) calculated from both runs. This loose
error bound is plotted in Fig. 4, indicating that our method makes
significant progress toward the optimal result even with such a
small number of training timepoints. Similar results for regularized
maps are observed over a large range of λ and k values (see
Supplementary Fig. 1).

image of Fig.�2


Fig. 3. Learned connectivity maps and receptive fields for 2 VP voxels, without regularization (a) and with regularization (b). Two VP voxels are denoted by purple and green stars,
and the top 30 voxels from the learned connectivity maps are shown in respective color in V1 (triangles indicate the location of the fovea). The inset plots compare the average
receptive field of the connected V1 voxels (heatmap) with the actual population receptive field of each VP voxel (gray circle, radius given by the average uncertainty in our receptive
field estimates). (a) The unregularized method produces maps with scattered weights, and the receptive fields of the connected V1 voxels are poor predictors of the VP receptive
field. (b) The regularized connectivity method learns spatially coherent connectivity maps consistent with retinotopic organization, and the receptive fields of the connected V1
voxels are similar to that of the VP voxel.
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hV4-PPA/FFA connectivity

Previouswork has shown that there is a preferential response in PPA
to peripherally-presented stimuli, and in FFA to foveally-presented
stimuli; this effect has been measured both with discrete stimuli
(Levy et al., 2001) and with traveling wave methods (Goesaert and Op
de Beeck, 2010). Experiments using diffusion tensor imaging (DTI)
have provided evidence that this eccentricity bias is also present in
the connectivity structure, with projections to early visual areas termi-
nating at peripheral eccentricities for PPA and foveal eccentricities for
FFA (Kim et al., 2005). Our connectivity method provides a simple
way of revealing such differential connectivity patterns, which does
not require a specialized experimental design or a large amount of
data. We chose to learn connectivity maps from PPA/FFA to area hV4



Fig. 4. Histogram comparing the precision of V1 maps generated from VP voxels. The x-axis indicates the difference between the receptive field locations of VP voxels and the
weighted average of the receptive fields in corresponding V1 connectivity maps. Since the actual functional connectivity between V1 and VP is known to preserve retinotopy,
each VP voxel and its learned V1 connectivity map should have similar receptive field locations. The y-axis shows the fraction of VP voxels in each difference bin spanning 1.2°
of visual angle. Red bars (back) show results for regularized maps (λ=103,k=10), which demonstrate significantly smaller differences than blue bars (front), which show results
for non-regularized maps (λ=0). The dotted lines compare the median difference of both methods to a loose lower bound, based on the uncertainty in our receptive field estimates.

Fig. 5. Effects of changing λ on learned hV4 connectivity maps. Connectivity maps over
hV4 were learned with different regularization strengths λ, for seed regions PPA and
FFA. An appropriate λ value can be chosen by maximizing the generalization perfor-
mance of the learned maps, based on held-out testing runs (upper plot). At these
values of λ, PPA and FFA show connectivity biases toward peripheral and central eccen-
tricities, respectively (lower plot). Shaded regions indicate standard error across sub-
jects (controlling for performance in the fully-regularized condition for the upper plot).
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(as described in (Wade et al., 2002)), since it is the area in visual cortex
most closely connected to ventral regions and is thereforemost likely to
show strong functional connectivity patterns.

We first examine the effect of varying λ on this dataset, and describe
a principled approach for automatically selecting the regularization
strength. λ controls the complexity of the learned connectivity pat-
terns; as λ→∞, we can learn only constant-weight maps, while as
λ→0, the weights are allowed to vary completely independently and
maps can be arbitrarily complex.

We now use hV4 as area A1 and either PPA or FFA as areaA2 (k=10);
the goal of our optimization is to find amap of weights for the hV4 voxels
that allows for the best prediction of themean PPA or FFA timecourse. For
each subject, we train the model parameters on one run and then test on
the other three runs (results are averaged across the choice of training
run). The testing accuracies across a wide range of λ values (spaced loga-
rithmically with step ratio of 100.25) are shown in Fig. 5 (upper plot). At
low values of λ, the connectivity maps are highly complex. These maps
severely overfit to the training run, and fail to generalize to testing runs.
At high values of λ, testing performance converges to essentially the
same result as in the traditional connectivity method, in which all voxels
have the same weight (unlike the traditional method, each hemisphere
can have a different constant weight). However, the surprising character-
istic of the testing accuracy curve is that it does not increase monotonically
as λ increases. In every subject, the best testing performance occurred at
an intermediate value of λ, which shows that there exists a non-constant
connectivity structurewhich is stable between runs; across subjects, test-
ing performance was significantly increased over the traditional method
(λ=∞) for 10−0.25bλb106.75 for PPA and 101.5bλb106 for FFA
(t(7)b−1.89,pb0.05, one-tailed paired t-test, uncorrected). This result
shows that our method can carefully balance the trade-off between
model complexity and data availability. Note that it is not possible to
find generalizable connectivity maps using only pre-smoothing rather
than spatial regularization (see Supplementary Fig. 2).

We obtain the best generalization performance around λ=101,
where we learn maps with a smoothness of approximately 9 mm
FWHM (see Supplementary Fig. 3). As shown in the lower plot of
Fig. 5, the connectivity maps in this regime have eccentricity biases
in opposite directions for the two seed regions, with PPA biased
toward peripheral eccentricities and FFA biased toward foveal
eccentricities (correlation of learned weights with voxel eccentrici-
ties is significantly different for 10−1.25bλb103, t(7)>2.36,pb0.05,
two-tailed paired t-test after z-transform, uncorrected).
Fig. 6 compares the eccentricity biases of the learnedmaps,withλ for
each subject chosen to maximize generalization accuracy. Using all 306
timepoints from a run, the hV4 connectivity map with PPA is biased to-
ward larger eccentricities, with an average correlation between eccen-
tricity and connectivity weight of 0.21 (t(7)=2.83,pb0.05, one-tailed
t-test after z-transform) while the hV4 connectivity map with FFA is
biased toward smaller eccentricities, with an average correlation of

image of Fig.�4
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−0.16 (t(7)=−2.24,pb0.05, one-tailed t-test after z-transform)
(PPA and FFA eccentricities significantly different, t(7)=4.19,pb0.01,
two-tailed paired t-test after z-transform). We can obtain similar
results using only the 148 “resting” timepoints in between stimulus
blocks, inwhich subjects are simplyfixating on a blank screen, suggesting
that our method is sensitive to general functional connectivity rather
than a stimulus mediated effect (PPA: t(7)=3.51,pb0.01, one-tailed
t-test after z-transform; FFA: t(7)=−2.39,pb0.05, one-tailed t-test
after z-transform; Difference: t(7)=4.88,pb0.01, two-tailed paired
t-test after z-transform).

To demonstrate that our method is more powerful than simpler ap-
proaches, the hV4 eccentricity biases for connectivity with PPA and FFA
are computed in two additional ways: voxel-wise correlation (C), in
which the weight of each hV4 voxel is set to the correlation between
the timecourse of that voxel and PPA or FFA; and an unregularized ver-
sion of our method (U) in which λ=0. There are only two cases in
which thesemethods give a significant result— the correlation method
shows a foveal bias for FFA when using all TRs (t(7)=−2.27,pb0.05,
one-tailed t-test after z-transform) and the unregularized method
shows a peripheral bias for PPA when using the resting TRs (t(7)=
5.60,pb0.01, one-tailed t-test after z-transform). For both all TRs and
the resting TRs, the difference between PPA and FFA eccentricity biases
is significantly greater using our method than using the correlation
method (all TRs: t(7)=3.63,pb0.01, resting TRs: t(7)=3.90,pb0.01,
two-tailed paired t-test after z-transform) or using the unregularized
method (all TRs: t(7)=4.20,pb0.01, resting TRs: t(7)=4.86,pb0.01,
two-tailed paired t-test after z-transform). Our approach is therefore
significantly more sensitive than either performing independent corre-
lations between individual voxels and the seed region, or learningmaps
over all voxels without using spatial regularization.

A potential concern regarding functional connectivity measures is
that they may be driven by local noise correlations, such that nearby
voxels are good predictors of each other even if the underlying neural
signals are unrelated. To ensure that our results are not being caused
by relative positions of the ROIs, we ran a control analysis in which
each hV4 voxel's connectivityweightwas simply inversely proportional
to its distance from the seed region. For bilateral ROIs, we set theweight
of voxel v=1/(dist from v to left ROI)+1/(dist from v to right ROI).
Since both PPA and FFA are closest to the anterior (peripheral) side of
Fig. 6. hV4 eccentricity differences for optimal values of λ. After choosing an optimal λ
value for each subject based on generalization performance (see Fig. 5), we compute
the eccentricity of hV4 connectivity maps for seed regions PPA and FFA, using our
method (O), a voxel correlation method (C), and our method without regularization
(U) (results averaged across four runs for each subject). Whether using all timepoints
from a run (306 TRs) or using only those timepoints during which no stimulus was
presented (approx. 148 TRs), our method finds that connectivity with PPA increases
with increasing eccentricity, while the opposite is true for FFA. The correlation and
unregularized controls are much less sensitive, showing significantly smaller differ-
ences between PPA and FFA eccentricity biases. Additionally, our results cannot be
explained simply by local noise correlations; since both PPA and FFA are closer to the
anterior (peripheral) side of hV4, such a model would predict similar peripheral eccen-
tricity biases in PPA and FFA (D). Error bars indicate standard error, ∗pb0.05, ∗∗pb0.01.
hV4, this model erroneously predicts that PPA and FFA should both
show a peripheral eccentricity bias (PPA: t(7)=5.59,pb0.01; FFA:
t(7)=3.03,pb0.05; two-tailed t-test after z-transform). Our results
therefore cannot be explained simply by the physical arrangement of
the ROIs.

Discussion

We have shown that our method can successfully extract known
functional connectivity structures for two sets of regions. By adding
spatial regularization to the traditional functional connectivity mea-
sure, our estimate of the connectivity between V1 and VP was made
significantly more accurate, showing a clear retinotopic organization.
We also demonstrated the expected eccentricity biases in the connec-
tivity between V4 and PPA/FFA; unlike past experiments showing this
effect (Levy et al., 2001; Goesaert and Op de Beeck, 2010), this was
accomplished without using a specialized experimental design, and
could even be estimated from only resting-state data. The success of
our method on these two different datasets demonstrates that this
technique is likely to be applicable to a wide range of datasets and sci-
entific questions. Note that we are able to learn these connectivity
maps using only ~200 timepoints, in contrast to the ~2000 timepoints
needed for complex models such as SVR (Heinzle et al., 2011). There-
fore, this method could be highly useful for detecting subtle varia-
tions in connectivity using small datasets. For example, it could
plausibly be used to detect differences in connectivity across stimulus
conditions, since only a small amount of data is required for learning.

Although these two experiments examined relatively simple char-
acteristics of the learned weight maps (average retinotopic position
or correlation with one of the spatial axes), our method should be ap-
plicable to any type of connectivity pattern, including multi-modal
weight maps in which two separate sections of an ROI show high con-
nectivity. Since the smoothness of the learned maps is controlled by a
continuous parameter λ, our method is highly flexible and can learn
arbitrarily complex connectivity maps, given enough training data.
For very large datasets, applying regularization will be less important,
and the optimal value of λ (giving the best generalization accuracy)
will decrease towards zero. Our method is therefore adaptive to the
training set size, and will learn maps at finer and finer scales as the
amount of training data increases.

Now that this method has been validated with known connectiv-
ity results, there are many opportunities to discover new connectivity
patterns. One possible application would be to learn connectivity
maps in frontal regions, where functional ROIs are difficult to define.
By locating the voxels in the frontal lobe that are connected to known
ROIs in sensory regions, we may be able to identify how low-level
sensory information converges in or is modulated by higher-level re-
gions. Also, given any ROI, we can describe its connectivity with the
entire rest of the cortex, by iteratively scanning a seed searchlight
through all of cortex and learning a connectivity map over the ROI
for each seed position. This will allow us to determine whether cer-
tain regions of cortex are connected to specific voxels in our ROI, as
in “functional fingerprint” methods (Kim et al., 2010).

There are several ways that our method could be extended in future
work. One current limitation is that weights can only be learned over
one region at a time; that is, Eq. (3) is not symmetric with respect to
A1 and A2. Simply replacing meanv (A2) with a weighted average
a2T⋅A2 will yield the degenerate solution a=a2=0, so (non-convex)
constraints must be added to produce reasonable results. Another pos-
sible extension would be to learn weights simultaneously across multi-
ple subjects. After first obtaining a voxel correspondence between
subjects using a functional alignment technique (such as Haxby et al.,
2011), we could learn a global set of weights that is shared by all sub-
jects. We could also allow the weights to vary between subjects, but in-
troduce a new regularization term that encourages subjects to have
similar weight maps.
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Conclusions

We have presented a new method for discovering functional con-
nectivity patterns between and within ROIs in the human brain. Our
method is specifically tailored to the very small-size datasets typical
of fMRI (addressing the known issue of data scarcity in this setting),
and is capable of detecting subtle patterns at the voxel level. Our
method is fast, can operate efficiently with little input data, gives re-
sults consistent with prior work, and has proven to be a good candi-
date for investigating the structure of functional connectivity in the
human brain.
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